Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(-4x^(3)y^(3))^(3)
Answer:

Fully simplify.\newline(4x3y3)3 \left(-4 x^{3} y^{3}\right)^{3} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(4x3y3)3 \left(-4 x^{3} y^{3}\right)^{3} \newlineAnswer:
  1. Identify base and exponent: Identify the base and the exponent in (4x3y3)3(-4x^{3}y^{3})^{3}.\newlineIn (4x3y3)3(-4x^{3}y^{3})^{3}, the base is 4x3y3-4x^{3}y^{3} and the exponent is 33.
  2. Apply power of a power rule: Apply the power of a power rule, which states that (am)n=amn(a^m)^n = a^{m*n}. Here, we have to raise each factor in the base to the power of 33. (\(-4x^{33}y^{33})^{33} = (4-4)^33 \times (x^{33})^33 \times (y^{33})^33
  3. Calculate (4)3(-4)^3: Calculate each part separately.\newlineFirst, calculate (4)3(-4)^3:\newline(4)3=4×4×4=64(-4)^3 = -4 \times -4 \times -4 = -64
  4. Calculate (x3)3(x^{3})^{3}: Now, calculate (x3)3(x^{3})^{3}:(x3)3=x(33)=x9(x^{3})^{3} = x^{(3\cdot3)} = x^{9}
  5. Calculate (y3)3(y^{3})^{3}: Finally, calculate (y3)3(y^{3})^{3}:(y3)3=y(3×3)=y9(y^{3})^{3} = y^{(3\times3)} = y^{9}
  6. Combine calculated parts: Combine all the calculated parts.\newline(4x3y3)3=(4)3×(x3)3×(y3)3=64×x9×y9(-4x^{3}y^{3})^{3} = (-4)^{3} \times (x^{3})^{3} \times (y^{3})^{3} = -64 \times x^{9} \times y^{9}
  7. Write final simplified expression: Write the final simplified expression.\newlineThe fully simplified form is 64x9y9-64x^{9}y^{9}.

More problems from Evaluate rational exponents