Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(-4x^(2)y^(5))^(3)
Answer:

Fully simplify.\newline(4x2y5)3 \left(-4 x^{2} y^{5}\right)^{3} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(4x2y5)3 \left(-4 x^{2} y^{5}\right)^{3} \newlineAnswer:
  1. Identify base and exponent: Identify the base and the exponent in (4x2y5)3(-4x^{2}y^{5})^{3}.\newlineIn (4x2y5)3(-4x^{2}y^{5})^{3}, the base is 4x2y5-4x^{2}y^{5} and the exponent is 33.
  2. Apply power of product rule: Apply the power of a product rule, which states that (ab)n=anbn (ab)^n = a^n * b^n , to the base.(4x2y5)3=(4)3(x2)3(y5)3 (-4x^{2}y^{5})^{3} = (-4)^3 * (x^{2})^3 * (y^{5})^3
  3. Calculate each part: Calculate each part separately.\newline(4)3=4×4×4=64(-4)^3 = -4 \times -4 \times -4 = -64\newline(x2)3=x(2×3)=x6(x^{2})^3 = x^{(2\times3)} = x^{6}\newline(y5)3=y(5×3)=y15(y^{5})^3 = y^{(5\times3)} = y^{15}
  4. Combine results: Combine the results from Step 33.\newline(4x2y5)3=64×x6×y15(-4x^{2}y^{5})^{3} = -64 \times x^{6} \times y^{15}

More problems from Evaluate rational exponents