Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(4x^(2)y^(5))^(3)
Answer:

Fully simplify.\newline(4x2y5)3 \left(4 x^{2} y^{5}\right)^{3} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(4x2y5)3 \left(4 x^{2} y^{5}\right)^{3} \newlineAnswer:
  1. Apply Power Rule: Apply the power of a power rule, which states that (am)n=amn(a^{m})^{n} = a^{m*n}, to the given expression (4x2y5)3(4x^{2}y^{5})^{3}.(4x2y5)3=43×(x2)3×(y5)3(4x^{2}y^{5})^{3} = 4^{3} \times (x^{2})^{3} \times (y^{5})^{3}
  2. Calculate Powers: Calculate the powers for each component of the expression.\newline43=4×4×4=644^{3} = 4 \times 4 \times 4 = 64\newline(x2)3=x2×3=x6(x^{2})^{3} = x^{2\times3} = x^{6}\newline(y5)3=y5×3=y15(y^{5})^{3} = y^{5\times3} = y^{15}
  3. Combine Results: Combine the results from Step 22 to get the final simplified expression.\newline(4x2y5)3=64x6y15(4x^{2}y^{5})^{3} = 64x^{6}y^{15}

More problems from Find trigonometric functions using a calculator