Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(3x^(5)y^(3))^(5)
Answer:

Fully simplify.\newline(3x5y3)5 \left(3 x^{5} y^{3}\right)^{5} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(3x5y3)5 \left(3 x^{5} y^{3}\right)^{5} \newlineAnswer:
  1. Identify base and exponent: Identify the base and the exponent in the expression (3x5y3)5(3x^{5}y^{3})^{5}. In (3x5y3)5(3x^{5}y^{3})^{5}, the base is (3x5y3)(3x^{5}y^{3}) and the exponent is 55.
  2. Apply power of power rule: Apply the power of a power rule, which states that am)n=amn foranybase$aa^m)^n = a^{m*n}\ for any base \$a and exponents mm and nn. (3x5y3)5=35(x5)5(y3)5 (3x^{5}y^{3})^{5} = 3^{5} * (x^{5})^{5} * (y^{3})^{5}
  3. Multiply exponents: Multiply the exponents inside the parentheses by the exponent outside the parentheses.\newline35×(x5×5)×(y3×5)3^{5} \times (x^{5\times5}) \times (y^{3\times5})\newline= 35×x25×y153^{5} \times x^{25} \times y^{15}
  4. Calculate value of 33: Calculate the value of 33 raised to the power of 55. \newline35=3×3×3×3×33^{5} = 3 \times 3 \times 3 \times 3 \times 3\newline=243= 243
  5. Write final simplified expression: Write the final simplified expression. 243×x25×y15243 \times x^{25} \times y^{15}

More problems from Evaluate rational exponents