Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(-3x^(5)y^(2))^(4)
Answer:

Fully simplify.\newline(3x5y2)4 \left(-3 x^{5} y^{2}\right)^{4} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(3x5y2)4 \left(-3 x^{5} y^{2}\right)^{4} \newlineAnswer:
  1. Identify base and exponent: Identify the base and the exponent in (3x5y2)4(-3x^{5}y^{2})^{4}.\newlineIn (3x5y2)4(-3x^{5}y^{2})^{4}, the base is (3x5y2)(-3x^{5}y^{2}) and the exponent is 44.
  2. Apply power of product rule: Apply the power of a product rule, which states that (ab)n=anbn (ab)^n = a^n * b^n , to the base. (3x5y2)4=(3)4(x5)4(y2)4 (-3x^{5}y^{2})^4 = (-3)^4 * (x^5)^4 * (y^2)^4
  3. Calculate each part: Calculate each part separately.\newlineFirst, calculate (3)4(-3)^4:\newline(3)4=(3)×(3)×(3)×(3)=81(-3)^4 = (-3) \times (-3) \times (-3) \times (-3) = 81
  4. Calculate (3)4(-3)^4: Calculate (x5)4(x^5)^4: \newline(x5)4=x(54)=x20(x^5)^4 = x^{(5*4)} = x^{20}
  5. Calculate (x5)4(x^5)^4: Calculate (y2)4(y^2)^4:(y2)4=y(24)=y8(y^2)^4 = y^{(2*4)} = y^8
  6. Calculate (y2)4(y^2)^4: Combine the results from steps 33, 44, and 55.\newline81×x20×y881 \times x^{20} \times y^8
  7. Combine results: Write the final simplified expression.\newlineThe fully simplified form is 81x20y881x^{20}y^{8}.

More problems from Evaluate rational exponents