Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(3x^(4)+y^(5))^(2)
Answer:

Fully simplify.\newline(3x4+y5)2 \left(3 x^{4}+y^{5}\right)^{2} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(3x4+y5)2 \left(3 x^{4}+y^{5}\right)^{2} \newlineAnswer:
  1. Apply Binomial Expansion: Apply the binomial expansion to the expression (3x4+y5)2(3x^{4}+y^{5})^{2}. When we square a binomial, we use the formula (a+b)2=a2+2ab+b2(a+b)^{2} = a^{2} + 2ab + b^{2}, where aa is the first term and bb is the second term. In this case, a=3x4a = 3x^{4} and b=y5b = y^{5}.
  2. Square First Term: Square the first term (3x4)2(3x^4)^2.(3x4)2=32×(x4)2=9x8(3x^4)^2 = 3^2 \times (x^4)^2 = 9x^8
  3. Multiply and Double: Multiply the two terms together and double the result, 2×(3x4)×(y5)2 \times (3x^4) \times (y^5).\newline2×(3x4)×(y5)=2×3×x4×y5=6x4y52 \times (3x^4) \times (y^5) = 2 \times 3 \times x^4 \times y^5 = 6x^4y^5
  4. Square Second Term: Square the second term (y5)2(y^5)^2.(y5)2=(y5)×(y5)=y10(y^5)^2 = (y^5) \times (y^5) = y^{10}
  5. Combine Results: Combine the results from steps 22, 33, and 44 to get the final simplified expression.\newline9x8+6x4y5+y109x^8 + 6x^4y^5 + y^{10}

More problems from Evaluate rational exponents