Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(-3x^(2)y^(2))^(4)
Answer:

Fully simplify.\newline(3x2y2)4 \left(-3 x^{2} y^{2}\right)^{4} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(3x2y2)4 \left(-3 x^{2} y^{2}\right)^{4} \newlineAnswer:
  1. Identify base and exponent: Identify the base and the exponent in (3x2y2)4(-3x^{2}y^{2})^{4}.\newlineIn (3x2y2)4(-3x^{2}y^{2})^{4}, the base is 3x2y2-3x^{2}y^{2} and the exponent is 44.
  2. Apply power of product rule: Apply the power of a product rule, which states that (ab)n=anbn (ab)^n = a^n * b^n , to the base. (3x2y2)4=(3)4(x2)4(y2)4(-3x^{2}y^{2})^{4} = (-3)^{4} * (x^{2})^{4} * (y^{2})^{4}
  3. Calculate each part: Calculate each part separately.\newline(3)4=81(-3)^4 = 81 because (3)×(3)×(3)×(3)=81(-3) \times (-3) \times (-3) \times (-3) = 81\newline(x(2))4=x(2×4)=x8(x^{(2)})^4 = x^{(2\times4)} = x^8 because when you raise a power to a power, you multiply the exponents.\newline(y(2))4=y(2×4)=y8(y^{(2)})^4 = y^{(2\times4)} = y^8 for the same reason as xx.
  4. Multiply results: Multiply the results together. 81×x8×y881 \times x^8 \times y^8
  5. Write final expression: Write the final simplified expression.\newlineThe simplified form is 81x8y881x^8y^8.

More problems from Evaluate rational exponents