Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(-2xy^(2))^(2)
Answer:

Fully simplify.\newline(2xy2)2 \left(-2 x y^{2}\right)^{2} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(2xy2)2 \left(-2 x y^{2}\right)^{2} \newlineAnswer:
  1. Identify Base and Exponent: Identify the base and the exponent in (2xy2)2(-2xy^{2})^{2}.\newlineIn (2xy2)2(-2xy^{2})^{2},\newlineBase: 2xy2-2xy^{2}\newlineExponent: 22
  2. Apply Power of Power Rule: Apply the power of a power rule.\newlineWhen raising a power to a power, you multiply the exponents. In this case, the base 2xy2-2xy^{2} is raised to the power of 22, which means we square each factor in the base.\newline((2)2(x)2(y2)2)((-2)^{2} \cdot (x)^{2} \cdot (y^{2})^{2})
  3. Calculate Each Part: Calculate each part separately.\newline(2)2=4(-2)^2 = 4 (since squaring a negative number gives a positive result)\newlinex2=x2x^2 = x^2 (raising xx to the power of 22)\newline(y(2))2=y(22)=y4(y^{(2)})^2 = y^{(2*2)} = y^4 (multiplying the exponents for yy)
  4. Combine Results: Combine the results.\newline4×x2×y44 \times x^2 \times y^4

More problems from Evaluate rational exponents