Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(-2x^(5)y^(2))^(2)
Answer:

Fully simplify.\newline(2x5y2)2 \left(-2 x^{5} y^{2}\right)^{2} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(2x5y2)2 \left(-2 x^{5} y^{2}\right)^{2} \newlineAnswer:
  1. Identify Base and Exponent: Identify the base and the exponent in (2x5y2)2(-2x^{5}y^{2})^{2}.\newlineIn (2x5y2)2(-2x^{5}y^{2})^{2},\newlineBase: 2x5y2-2x^{5}y^{2}\newlineExponent: 22
  2. Apply Power of Product Rule: Apply the power of a product rule, which states that (ab)n=anbn (ab)^n = a^n * b^n , to the base. (\(-2x^{55}y^{22})^{22} = (2-2)^22 * (x^{55})^22 * (y^{22})^22\
  3. Calculate Each Part: Calculate each part separately.\newline(2)2=4(-2)^2 = 4\newline(x5)2=x(52)=x10(x^{5})^2 = x^{(5*2)} = x^{10}\newline(y2)2=y(22)=y4(y^{2})^2 = y^{(2*2)} = y^{4}
  4. Multiply Results Together: Multiply the results together to get the final simplified expression.\newline4×x10×y4=4x10y44 \times x^{10} \times y^{4} = 4x^{10}y^{4}

More problems from Evaluate rational exponents