Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(2x^(2)y)^(4)
Answer:

Fully simplify.\newline(2x2y)4 \left(2 x^{2} y\right)^{4} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(2x2y)4 \left(2 x^{2} y\right)^{4} \newlineAnswer:
  1. Apply Power Rule: Apply the power rule to the entire expression.\newlineWhen raising a power to a power, you multiply the exponents. In this case, we have (2x2y)4(2x^{2}y)^{4}, which means we need to raise each component inside the parentheses to the power of 44.\newline(2x2y)4=24×(x2)4×y4(2x^{2}y)^{4} = 2^{4} \times (x^{2})^{4} \times y^{4}
  2. Simplify Components: Simplify each component separately.\newlineNow we simplify each part of the expression:\newline24=2×2×2×2=162^{4} = 2 \times 2 \times 2 \times 2 = 16\newline(x2)4=x2×4=x8(x^{2})^{4} = x^{2\times4} = x^{8}\newliney4=y×y×y×yy^{4} = y \times y \times y \times y
  3. Combine Simplified Components: Combine the simplified components. After simplifying each part, we combine them to get the final simplified expression: 16×x8×y416 \times x^{8} \times y^{4}

More problems from Evaluate rational exponents