Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the rotation 
-152^(@), find the coterminal angle from 
0^(@) <= theta < 360^(@), the quadrant, and the reference angle.
The coterminal angle is 
◻^(@), which lies in Quadrant 
◻, with a reference angle of 
◻^(@).

For the rotation 152 -152^{\circ} , find the coterminal angle from 0^{\circ} \leq \theta<360^{\circ} , the quadrant, and the reference angle.\newlineThe coterminal angle is \square^{\circ} , which lies in Quadrant \square , with a reference angle of \square^{\circ} .

Full solution

Q. For the rotation 152 -152^{\circ} , find the coterminal angle from 0θ<360 0^{\circ} \leq \theta<360^{\circ} , the quadrant, and the reference angle.\newlineThe coterminal angle is \square^{\circ} , which lies in Quadrant \square , with a reference angle of \square^{\circ} .
  1. Add 360360°: To find the coterminal angle, add 360°360° to 152°-152° until the result is between 0° and 360°360°.\newline152°+360°=208°-152° + 360° = 208°
  2. Check result: Check if 208208^\circ is between 00^\circ and 360360^\circ.\newlineYes, it is.
  3. Determine quadrant: Determine the quadrant for 208°208°. Since 208°208° is more than 180°180° but less than 270°270°, it's in Quadrant III.
  4. Find reference angle: Find the reference angle for 208°208° in Quadrant III.\newlineReference angle = 180°(208°180°)180° - (208° - 180°)\newlineReference angle = 180°28°180° - 28°\newlineReference angle = 152°152°

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity