Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=((x)/(7))^(7), find 
f^(-1)(x).

f^(-1)(x)=root(7)((7x))

f^(-1)(x)=root(7)(((x)/(7)))

f^(-1)(x)=7root(7)(x)

f^(-1)(x)=(root(7)(x))/(7)

For the function f(x)=(x7)7 f(x)=\left(\frac{x}{7}\right)^{7} , find f1(x) f^{-1}(x) .\newlinef1(x)=(7x)7 f^{-1}(x)=\sqrt[7]{(7 x)} \newlinef1(x)=(x7)7 f^{-1}(x)=\sqrt[7]{\left(\frac{x}{7}\right)} \newlinef1(x)=7x7 f^{-1}(x)=7 \sqrt[7]{x} \newlinef1(x)=x77 f^{-1}(x)=\frac{\sqrt[7]{x}}{7}

Full solution

Q. For the function f(x)=(x7)7 f(x)=\left(\frac{x}{7}\right)^{7} , find f1(x) f^{-1}(x) .\newlinef1(x)=(7x)7 f^{-1}(x)=\sqrt[7]{(7 x)} \newlinef1(x)=(x7)7 f^{-1}(x)=\sqrt[7]{\left(\frac{x}{7}\right)} \newlinef1(x)=7x7 f^{-1}(x)=7 \sqrt[7]{x} \newlinef1(x)=x77 f^{-1}(x)=\frac{\sqrt[7]{x}}{7}
  1. Understand the problem: Understand the problem.\newlineWe need to find the inverse function of f(x)=(x7)7f(x) = \left(\frac{x}{7}\right)^7, which we will denote as f1(x)f^{-1}(x). The inverse function will undo the operation of f(x)f(x), meaning if f(a)=bf(a) = b, then f1(b)=af^{-1}(b) = a.
  2. Write function with y: Write the original function with y instead of f(x)f(x).\newlineLet y=(x7)7y = \left(\frac{x}{7}\right)^7. We will solve for xx in terms of yy to find the inverse function.
  3. Swap xx and yy: Swap xx and yy.\newlineTo find the inverse function, we swap xx and yy in the equation. So we get x=(y7)7x = \left(\frac{y}{7}\right)^7.
  4. Solve for y: Solve for y.\newlineTo solve for y, we need to take the 77th root of both sides of the equation to get rid of the exponent on the right side. This gives us the 77th root of xx equals y/7y/7, or y=7×(7y = 7 \times (7th root of x)x).

More problems from Multiplication with rational exponents