Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=(x+5)^((1)/(5)), find 
f^(-1)(x).

f^(-1)(x)=(x+5)^(5)

f^(-1)(x)=x^((1)/(5))-5

f^(-1)(x)=x^(5)-5

f^(-1)(x)=(x-5)^((1)/(5))

For the function f(x)=(x+5)15 f(x)=(x+5)^{\frac{1}{5}} , find f1(x) f^{-1}(x) .\newlinef1(x)=(x+5)5 f^{-1}(x)=(x+5)^{5} \newlinef1(x)=x155 f^{-1}(x)=x^{\frac{1}{5}}-5 \newlinef1(x)=x55 f^{-1}(x)=x^{5}-5 \newlinef1(x)=(x5)15 f^{-1}(x)=(x-5)^{\frac{1}{5}}

Full solution

Q. For the function f(x)=(x+5)15 f(x)=(x+5)^{\frac{1}{5}} , find f1(x) f^{-1}(x) .\newlinef1(x)=(x+5)5 f^{-1}(x)=(x+5)^{5} \newlinef1(x)=x155 f^{-1}(x)=x^{\frac{1}{5}}-5 \newlinef1(x)=x55 f^{-1}(x)=x^{5}-5 \newlinef1(x)=(x5)15 f^{-1}(x)=(x-5)^{\frac{1}{5}}
  1. Rewrite with y: To find the inverse function, we need to switch the roles of xx and yy in the original function and then solve for yy. Let's start by rewriting the function with yy:
    f(x)=(x+5)15f(x) = (x+5)^{\frac{1}{5}}
    y=(x+5)15y = (x+5)^{\frac{1}{5}}
    Now we switch xx and yy:
    x=(y+5)15x = (y+5)^{\frac{1}{5}}
  2. Switch x and y: Next, we need to isolate yy. To do this, we raise both sides of the equation to the power of 55 to eliminate the exponent on the right side:\newlinex5=((y+5)1/5)5x^5 = ((y+5)^{1/5})^5\newlinex5=y+5x^5 = y+5
  3. Isolate yy: Now, we subtract 55 from both sides to solve for yy:x55=yx^5 - 5 = yy=x55y = x^5 - 5
  4. Final Inverse Function: We have found the inverse function by solving for yy. The inverse function is: f1(x)=x55f^{-1}(x) = x^5 - 5

More problems from Multiplication with rational exponents