Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=((x)/(5))^((1)/(3)), find 
f^(-1)(x).

f^(-1)(x)=(5x)^(3)

f^(-1)(x)=5x^(3)

f^(-1)(x)=((x)/(5))^(3)

f^(-1)(x)=(5x)^((1)/(3))

For the function f(x)=(x5)13 f(x)=\left(\frac{x}{5}\right)^{\frac{1}{3}} , find f1(x) f^{-1}(x) .\newlinef1(x)=(5x)3 f^{-1}(x)=(5 x)^{3} \newlinef1(x)=5x3 f^{-1}(x)=5 x^{3} \newlinef1(x)=(x5)3 f^{-1}(x)=\left(\frac{x}{5}\right)^{3} \newlinef1(x)=(5x)13 f^{-1}(x)=(5 x)^{\frac{1}{3}}

Full solution

Q. For the function f(x)=(x5)13 f(x)=\left(\frac{x}{5}\right)^{\frac{1}{3}} , find f1(x) f^{-1}(x) .\newlinef1(x)=(5x)3 f^{-1}(x)=(5 x)^{3} \newlinef1(x)=5x3 f^{-1}(x)=5 x^{3} \newlinef1(x)=(x5)3 f^{-1}(x)=\left(\frac{x}{5}\right)^{3} \newlinef1(x)=(5x)13 f^{-1}(x)=(5 x)^{\frac{1}{3}}
  1. Rewrite function with y: To find the inverse function, f1(x)f^{-1}(x), we need to switch the roles of xx and yy in the original function and then solve for yy. Let's start by rewriting the function with yy instead of f(x)f(x):\newliney=(x5)13y = \left(\frac{x}{5}\right)^{\frac{1}{3}}
  2. Switch x and y: Now, we switch x and y to find the inverse: x=(y5)13x = \left(\frac{y}{5}\right)^{\frac{1}{3}}
  3. Isolate y: Next, we want to isolate y. To do this, we'll raise both sides of the equation to the power of 33 to get rid of the cube root: x3=(y5)(13)3x^3 = \left(\frac{y}{5}\right)^{\left(\frac{1}{3}\right)^3}
  4. Raise both sides to power of 33: When we raise a power to a power, we multiply the exponents. Since (13)×3=1(\frac{1}{3}) \times 3 = 1, the cube root and the power of 33 cancel each other out, leaving us with: x3=y5x^3 = \frac{y}{5}
  5. Multiply both sides by 55: Now, we multiply both sides by 55 to solve for y:\newline5×x3=y5 \times x^3 = y
  6. Find inverse function: We have found the inverse function. The inverse function, f1(x)f^{-1}(x), is: f1(x)=5x3f^{-1}(x) = 5x^3

More problems from Multiplication with rational exponents