Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=((x-4))/(3), find 
f^(-1)(x).

f^(-1)(x)=((x+4))/(3)

f^(-1)(x)=3(x-4)

f^(-1)(x)=3(x+4)

f^(-1)(x)=3x+4

For the function f(x)=(x4)3 f(x)=\frac{(x-4)}{3} , find f1(x) f^{-1}(x) .\newlinef1(x)=(x+4)3 f^{-1}(x)=\frac{(x+4)}{3} \newlinef1(x)=3(x4) f^{-1}(x)=3(x-4) \newlinef1(x)=3(x+4) f^{-1}(x)=3(x+4) \newlinef1(x)=3x+4 f^{-1}(x)=3 x+4

Full solution

Q. For the function f(x)=(x4)3 f(x)=\frac{(x-4)}{3} , find f1(x) f^{-1}(x) .\newlinef1(x)=(x+4)3 f^{-1}(x)=\frac{(x+4)}{3} \newlinef1(x)=3(x4) f^{-1}(x)=3(x-4) \newlinef1(x)=3(x+4) f^{-1}(x)=3(x+4) \newlinef1(x)=3x+4 f^{-1}(x)=3 x+4
  1. Rewrite with y: To find the inverse function, f1(x)f^{-1}(x), we need to switch the roles of xx and yy in the original function and then solve for yy. Let's start by rewriting the function with yy instead of f(x)f(x):\newliney=x43y = \frac{x - 4}{3}
  2. Switch x and y: Now, we switch x and y to find the inverse: x=y43x = \frac{y - 4}{3}
  3. Eliminate denominator: Next, we solve for yy by multiplying both sides of the equation by 33 to eliminate the denominator: 3x=y43x = y - 4
  4. Isolate y: Then, we add 44 to both sides of the equation to isolate yy: 3x+4=y3x + 4 = y
  5. Write inverse function: Now that we have yy by itself, we can write the inverse function: f1(x)=3x+4f^{-1}(x) = 3x + 4

More problems from Multiplication with rational exponents