Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=((x^((1)/(7)))/(5))^(3), find 
f^(-1)(x).

f^(-1)(x)=(root(3)(5x))^(7)

f^(-1)(x)=5root(3)(x^(7))

f^(-1)(x)=root(3)(5x^(7))

f^(-1)(x)=(5root(3)(x))^(7)

For the function f(x)=(x175)3 f(x)=\left(\frac{x^{\frac{1}{7}}}{5}\right)^{3} , find f1(x) f^{-1}(x) .\newlinef1(x)=(5x3)7 f^{-1}(x)=(\sqrt[3]{5 x})^{7} \newlinef1(x)=5x73 f^{-1}(x)=5 \sqrt[3]{x^{7}} \newlinef1(x)=5x73 f^{-1}(x)=\sqrt[3]{5 x^{7}} \newlinef1(x)=(5x3)7 f^{-1}(x)=(5 \sqrt[3]{x})^{7}

Full solution

Q. For the function f(x)=(x175)3 f(x)=\left(\frac{x^{\frac{1}{7}}}{5}\right)^{3} , find f1(x) f^{-1}(x) .\newlinef1(x)=(5x3)7 f^{-1}(x)=(\sqrt[3]{5 x})^{7} \newlinef1(x)=5x73 f^{-1}(x)=5 \sqrt[3]{x^{7}} \newlinef1(x)=5x73 f^{-1}(x)=\sqrt[3]{5 x^{7}} \newlinef1(x)=(5x3)7 f^{-1}(x)=(5 \sqrt[3]{x})^{7}
  1. Replace and Switch: To find the inverse function, f1(x)f^{-1}(x), we need to switch the roles of xx and yy in the original function and then solve for yy. The original function is f(x) = igg( rac{x^{1/7}}{5}igg)^3. Let's replace f(x)f(x) with yy for clarity:\newliney = igg( rac{x^{1/7}}{5}igg)^3\newlineNow, switch xx and yy:\newlinexx00\newlineNext, we need to solve this equation for yy.
  2. Cube Root Isolation: To isolate the term with yy, we need to get rid of the cube on the right side. We can do this by taking the cube root of both sides:\newlinex3=y175\sqrt[3]{x} = \frac{y^{\frac{1}{7}}}{5}\newlineNow we have the cube root of xx equals yy to the power of 17\frac{1}{7} divided by 55.
  3. Multiply by 55: To further isolate yy, we need to multiply both sides by 55:5×x3=y175 \times \sqrt[3]{x} = y^{\frac{1}{7}}Now we have 55 times the cube root of xx equals yy to the power of 17\frac{1}{7}.
  4. Raise to Power of 77: To solve for yy, we need to raise both sides to the power of 77 to get rid of the exponent 17\frac{1}{7} on the right side:\newline(5x3)7=y(5 \cdot \sqrt[3]{x})^7 = y\newlineNow we have yy on one side, and the expression (55 times the cube root of xx) raised to the power of 77 on the other side.
  5. Final Inverse Function: We have found the inverse function:\newlinef1(x)=(5x3)7f^{-1}(x) = (5 \cdot \sqrt[3]{x})^7\newlineThis is the inverse function of the original function f(x)f(x).

More problems from Multiplication with rational exponents