Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=(x^((1)/(3)))/(7), find 
f^(-1)(x).

f^(-1)(x)=7x^((1)/(3))

f^(-1)(x)=(7x)^(3)

f^(-1)(x)=(7x)^((1)/(3))

f^(-1)(x)=(x^(3))/(7)

For the function f(x)=x137 f(x)=\frac{x^{\frac{1}{3}}}{7} , find f1(x) f^{-1}(x) .\newlinef1(x)=7x13 f^{-1}(x)=7 x^{\frac{1}{3}} \newlinef1(x)=(7x)3 f^{-1}(x)=(7 x)^{3} \newlinef1(x)=(7x)13 f^{-1}(x)=(7 x)^{\frac{1}{3}} \newlinef1(x)=x37 f^{-1}(x)=\frac{x^{3}}{7}

Full solution

Q. For the function f(x)=x137 f(x)=\frac{x^{\frac{1}{3}}}{7} , find f1(x) f^{-1}(x) .\newlinef1(x)=7x13 f^{-1}(x)=7 x^{\frac{1}{3}} \newlinef1(x)=(7x)3 f^{-1}(x)=(7 x)^{3} \newlinef1(x)=(7x)13 f^{-1}(x)=(7 x)^{\frac{1}{3}} \newlinef1(x)=x37 f^{-1}(x)=\frac{x^{3}}{7}
  1. Replace with yy: To find the inverse function, we start by replacing f(x)f(x) with yy for easier manipulation.\newliney=x137y = \frac{x^{\frac{1}{3}}}{7}
  2. Swap x and y: Next, we swap x and y to begin solving for the inverse function.\newlinex=y137x = \frac{y^{\frac{1}{3}}}{7}
  3. Isolate y: Now, we solve for y by isolating it on one side of the equation. We start by multiplying both sides by 77 to get rid of the denominator.\newline7x=y(1/3)7x = y^{(1/3)}
  4. Eliminate cube root: To eliminate the cube root, we raise both sides of the equation to the power of 33. (7x)3=(y1/3)3(7x)^3 = (y^{1/3})^3
  5. Simplify equation: Raising both sides to the power of 33, we simplify the equation.343x3=y343x^3 = y
  6. Replace with f1(x)f^{-1}(x): Finally, we replace yy with f1(x)f^{-1}(x) to denote the inverse function.\newlinef1(x)=343x3f^{-1}(x) = 343x^3

More problems from Multiplication with rational exponents