Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=(x^((1)/(3)))/(4), find 
f^(-1)(x).

f^(-1)(x)=4x^((1)/(3))

f^(-1)(x)=4x^(3)

f^(-1)(x)=(4x)^(3)

f^(-1)(x)=((x)/(4))^(3)

For the function f(x)=x134 f(x)=\frac{x^{\frac{1}{3}}}{4} , find f1(x) f^{-1}(x) .\newlinef1(x)=4x13 f^{-1}(x)=4 x^{\frac{1}{3}} \newlinef1(x)=4x3 f^{-1}(x)=4 x^{3} \newlinef1(x)=(4x)3 f^{-1}(x)=(4 x)^{3} \newlinef1(x)=(x4)3 f^{-1}(x)=\left(\frac{x}{4}\right)^{3}

Full solution

Q. For the function f(x)=x134 f(x)=\frac{x^{\frac{1}{3}}}{4} , find f1(x) f^{-1}(x) .\newlinef1(x)=4x13 f^{-1}(x)=4 x^{\frac{1}{3}} \newlinef1(x)=4x3 f^{-1}(x)=4 x^{3} \newlinef1(x)=(4x)3 f^{-1}(x)=(4 x)^{3} \newlinef1(x)=(x4)3 f^{-1}(x)=\left(\frac{x}{4}\right)^{3}
  1. Rewrite function with y: To find the inverse function, f1(x)f^{-1}(x), we need to switch the roles of xx and yy in the original function and then solve for yy. Let's start by rewriting the function with yy instead of f(x)f(x):\newliney=x134y = \frac{x^{\frac{1}{3}}}{4}
  2. Switch x and y: Now, switch x and y to find the inverse function: x=y134x = \frac{y^{\frac{1}{3}}}{4}
  3. Isolate y: To solve for y, we need to isolate y on one side of the equation. Start by multiplying both sides by 44 to get rid of the denominator:\newline4x=y134x = y^{\frac{1}{3}}
  4. Raise to power of 33: Now, to get rid of the cube root, we raise both sides of the equation to the power of 33:(4x)3=(y13)3(4x)^3 = (y^{\frac{1}{3}})^3
  5. Simplify and find inverse: Simplifying both sides gives us: 64x3=y64x^3 = y
  6. Simplify and find inverse: Simplifying both sides gives us: 64x3=y64x^3 = y We have now isolated yy and found the inverse function. So, the inverse function is: f1(x)=64x3f^{-1}(x) = 64x^3

More problems from Multiplication with rational exponents