Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=root(7)(((x)/(7))), find 
f^(-1)(x).

f^(-1)(x)=7x^(7)

f^(-1)(x)=(x^(7))/(7)

f^(-1)(x)=root(7)((7x))

f^(-1)(x)=(7x)^(7)

For the function f(x)=(x7)7 f(x)=\sqrt[7]{\left(\frac{x}{7}\right)} , find f1(x) f^{-1}(x) .\newlinef1(x)=7x7 f^{-1}(x)=7 x^{7} \newlinef1(x)=x77 f^{-1}(x)=\frac{x^{7}}{7} \newlinef1(x)=(7x)7 f^{-1}(x)=\sqrt[7]{(7 x)} \newlinef1(x)=(7x)7 f^{-1}(x)=(7 x)^{7}

Full solution

Q. For the function f(x)=(x7)7 f(x)=\sqrt[7]{\left(\frac{x}{7}\right)} , find f1(x) f^{-1}(x) .\newlinef1(x)=7x7 f^{-1}(x)=7 x^{7} \newlinef1(x)=x77 f^{-1}(x)=\frac{x^{7}}{7} \newlinef1(x)=(7x)7 f^{-1}(x)=\sqrt[7]{(7 x)} \newlinef1(x)=(7x)7 f^{-1}(x)=(7 x)^{7}
  1. Understand Function and Goal: Understand the function and the goal.\newlineThe function f(x)=(x7)7f(x) = \sqrt[7]{\left(\frac{x}{7}\right)} is a 7th7^{\text{th}} root function. We need to find its inverse, which means we want to find a function f1(x)f^{-1}(x) such that f(f1(x))=xf(f^{-1}(x)) = x.
  2. Set Equal to y: Set f(x)f(x) equal to yy for convenience.\newlineLet y=f(x)=(x7)7y = f(x) = \sqrt[7]{\left(\frac{x}{7}\right)}.
  3. Swap xx and yy: Swap xx and yy to find the inverse.\newlineTo find the inverse function, we swap xx and yy, so we get x=(y7)7x = \sqrt[7]{\left(\frac{y}{7}\right)}.
  4. Solve for y: Solve for y.\newlineTo isolate yy, we need to get rid of the 77th root. We do this by raising both sides of the equation to the 77th power:\newline$(x)^\(7\) = (\sqrt[\(7\)]{(y/\(7\))})^\(7\).
  5. Simplify Equation: Simplify the equation.\(\newline\)When we raise the \(7\)th root to the \(7\)th power, they cancel each other out, so we get:\(\newline\)\((x)^7 = \frac{y}{7}\).
  6. Multiply by \(7\): Multiply both sides by \(7\) to solve for \(y\).\(7 \times (x)^7 = y\).
  7. Write Inverse Function: Write the inverse function.\(\newline\)Now that we have \(y\) by itself, we can write the inverse function as:\(\newline\)\(f^{-1}(x) = 7x^{7}\).

More problems from Multiplication with rational exponents