Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=(root(7)(x)+5)/(4), find 
f^(-1)(x).

f^(-1)(x)=4(x^(7)-5)

f^(-1)(x)=4x^(7)-5

f^(-1)(x)=(4x-5)^(7)

f^(-1)(x)=4(x-5)^(7)

For the function f(x)=x7+54 f(x)=\frac{\sqrt[7]{x}+5}{4} , find f1(x) f^{-1}(x) .\newlinef1(x)=4(x75) f^{-1}(x)=4\left(x^{7}-5\right) \newlinef1(x)=4x75 f^{-1}(x)=4 x^{7}-5 \newlinef1(x)=(4x5)7 f^{-1}(x)=(4 x-5)^{7} \newlinef1(x)=4(x5)7 f^{-1}(x)=4(x-5)^{7}

Full solution

Q. For the function f(x)=x7+54 f(x)=\frac{\sqrt[7]{x}+5}{4} , find f1(x) f^{-1}(x) .\newlinef1(x)=4(x75) f^{-1}(x)=4\left(x^{7}-5\right) \newlinef1(x)=4x75 f^{-1}(x)=4 x^{7}-5 \newlinef1(x)=(4x5)7 f^{-1}(x)=(4 x-5)^{7} \newlinef1(x)=4(x5)7 f^{-1}(x)=4(x-5)^{7}
  1. Rewrite with y: To find the inverse function, f1(x)f^{-1}(x), we need to switch the roles of xx and yy in the original function and then solve for yy. Let's start by rewriting the function with yy:f(x)=(x7+5)/4f(x) = \left(\sqrt[7]{x} + 5\right) / 4y=(x1/7+5)/4y = \left(x^{1/7} + 5\right) / 4
  2. Replace variables: Now, replace f(x)f(x) with yy and xx with f1(x)f^{-1}(x):x=y17+54x = \frac{y^{\frac{1}{7}} + 5}{4}
  3. Multiply by 44: Next, we need to solve for yy. Multiply both sides by 44 to get rid of the denominator:\newline4x=y17+54x = y^{\frac{1}{7}} + 5
  4. Subtract 55: Subtract 55 from both sides to isolate the term with yy: 4x5=y1/74x - 5 = y^{1/7}
  5. Raise to power 77: Now, raise both sides to the power of 77 to get rid of the 77th root:\newline(4x5)7=y(4x - 5)^7 = y
  6. Write inverse function: Finally, we can write the inverse function by replacing yy with f1(x)f^{-1}(x):f1(x)=(4x5)7f^{-1}(x) = (4x - 5)^7

More problems from Multiplication with rational exponents