Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=(root(5)(x)+1)/(5), find 
f^(-1)(x).

f^(-1)(x)=5(x^(5)-1)

f^(-1)(x)=5(x-1)^(5)

f^(-1)(x)=(5x-1)^(5)

f^(-1)(x)=(5x)^(5)-1

For the function f(x)=x5+15 f(x)=\frac{\sqrt[5]{x}+1}{5} , find f1(x) f^{-1}(x) .\newlinef1(x)=5(x51) f^{-1}(x)=5\left(x^{5}-1\right) \newlinef1(x)=5(x1)5 f^{-1}(x)=5(x-1)^{5} \newlinef1(x)=(5x1)5 f^{-1}(x)=(5 x-1)^{5} \newlinef1(x)=(5x)51 f^{-1}(x)=(5 x)^{5}-1

Full solution

Q. For the function f(x)=x5+15 f(x)=\frac{\sqrt[5]{x}+1}{5} , find f1(x) f^{-1}(x) .\newlinef1(x)=5(x51) f^{-1}(x)=5\left(x^{5}-1\right) \newlinef1(x)=5(x1)5 f^{-1}(x)=5(x-1)^{5} \newlinef1(x)=(5x1)5 f^{-1}(x)=(5 x-1)^{5} \newlinef1(x)=(5x)51 f^{-1}(x)=(5 x)^{5}-1
  1. Replace with yy: To find the inverse function, we start by replacing f(x)f(x) with yy:y=x5+15y = \frac{\sqrt[5]{x} + 1}{5}
  2. Swap x and y: Next, we swap x and y to begin solving for the new y, which will be our f1(x)f^{-1}(x):x=y5+15x = \frac{\sqrt[5]{y} + 1}{5}
  3. Eliminate fraction: Multiply both sides by 55 to eliminate the fraction: 5x=y5+15x = \sqrt[5]{y} + 1
  4. Isolate fifth root term: Subtract 11 from both sides to isolate the fifth root term:\newline5x1=y55x - 1 = \sqrt[5]{y}
  5. Eliminate fifth root: Raise both sides to the power of 55 to eliminate the fifth root: (5x1)5=y(5x - 1)^5 = y
  6. Inverse function: Now we have the inverse function: f1(x)=(5x1)5f^{-1}(x) = (5x - 1)^5

More problems from Multiplication with rational exponents