Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=7x^(5), find 
f^(-1)(x).

f^(-1)(x)=7root(5)(x)

f^(-1)(x)=root(5)(((x)/(7)))

f^(-1)(x)=((x)/(7))^(5)

f^(-1)(x)=(root(5)(x))/(7)

For the function f(x)=7x5 f(x)=7 x^{5} , find f1(x) f^{-1}(x) .\newlinef1(x)=7x5 f^{-1}(x)=7 \sqrt[5]{x} \newlinef1(x)=(x7)5 f^{-1}(x)=\sqrt[5]{\left(\frac{x}{7}\right)} \newlinef1(x)=(x7)5 f^{-1}(x)=\left(\frac{x}{7}\right)^{5} \newlinef1(x)=x57 f^{-1}(x)=\frac{\sqrt[5]{x}}{7}

Full solution

Q. For the function f(x)=7x5 f(x)=7 x^{5} , find f1(x) f^{-1}(x) .\newlinef1(x)=7x5 f^{-1}(x)=7 \sqrt[5]{x} \newlinef1(x)=(x7)5 f^{-1}(x)=\sqrt[5]{\left(\frac{x}{7}\right)} \newlinef1(x)=(x7)5 f^{-1}(x)=\left(\frac{x}{7}\right)^{5} \newlinef1(x)=x57 f^{-1}(x)=\frac{\sqrt[5]{x}}{7}
  1. Original Function: To find the inverse function, f1(x)f^{-1}(x), we need to switch the roles of xx and yy in the original function and then solve for yy. The original function is f(x)=7x5f(x) = 7x^{5}, which we can write as y=7x5y = 7x^{5}.
  2. Replace yy with xx: Replace yy with xx to begin finding the inverse function: x=7y5x = 7y^{5}.
  3. Isolate y: Now, solve for y. To do this, we need to isolate y on one side of the equation. Start by dividing both sides by 77: (x/7)=y5(x/7) = y^{5}.
  4. Take fifth root: Next, take the fifth root of both sides to solve for yy: y=(x7)5y = \sqrt[5]{\left(\frac{x}{7}\right)}.
  5. Write Inverse Function: Now that we have solved for yy, we can write the inverse function: f1(x)=(x7)5f^{-1}(x) = \sqrt[5]{\left(\frac{x}{7}\right)}.

More problems from Multiplication with rational exponents