Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=7x^((1)/(3)), find 
f^(-1)(x).

f^(-1)(x)=((x)/(7))^(3)

f^(-1)(x)=(x^(3))/(7)

f^(-1)(x)=(7x)^(3)

f^(-1)(x)=7x^(3)

For the function f(x)=7x13 f(x)=7 x^{\frac{1}{3}} , find f1(x) f^{-1}(x) .\newlinef1(x)=(x7)3 f^{-1}(x)=\left(\frac{x}{7}\right)^{3} \newlinef1(x)=x37 f^{-1}(x)=\frac{x^{3}}{7} \newlinef1(x)=(7x)3 f^{-1}(x)=(7 x)^{3} \newlinef1(x)=7x3 f^{-1}(x)=7 x^{3}

Full solution

Q. For the function f(x)=7x13 f(x)=7 x^{\frac{1}{3}} , find f1(x) f^{-1}(x) .\newlinef1(x)=(x7)3 f^{-1}(x)=\left(\frac{x}{7}\right)^{3} \newlinef1(x)=x37 f^{-1}(x)=\frac{x^{3}}{7} \newlinef1(x)=(7x)3 f^{-1}(x)=(7 x)^{3} \newlinef1(x)=7x3 f^{-1}(x)=7 x^{3}
  1. Original Function: To find the inverse function, f1(x)f^{-1}(x), we need to switch the roles of xx and yy in the original function and then solve for yy. The original function is f(x)=7x13f(x) = 7x^{\frac{1}{3}}, which we can write as y=7x13y = 7x^{\frac{1}{3}}.
  2. Switch Roles: Replace yy with xx and xx with yy to get the equation for the inverse function: x=7y13x = 7y^{\frac{1}{3}}.
  3. Isolate y: To solve for y, we need to isolate y on one side of the equation. Start by dividing both sides of the equation by 77 to get x7=y13\frac{x}{7} = y^{\frac{1}{3}}.
  4. Eliminate Cube Root: Now, raise both sides of the equation to the power of 33 to eliminate the cube root on the right side: $(\frac{x}{\(7\)})^\(3\) = (y^{\frac{\(1\)}{\(3\)}})^\(3\).
  5. Final Inverse Function: Simplifying the right side, we get \((\frac{x}{7})^3 = y\). This is the inverse function of the original function.

More problems from Multiplication with rational exponents