Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=6x^(7)-4, find 
f^(-1)(x).

f^(-1)(x)=(root(7)(x+4))/(6)

f^(-1)(x)=root(7)((x+4)/(6))

f^(-1)(x)=root(7)((x)/(6))+4

f^(-1)(x)=(root(7)(x))/(6)+4

For the function f(x)=6x74 f(x)=6 x^{7}-4 , find f1(x) f^{-1}(x) .\newlinef1(x)=x+476 f^{-1}(x)=\frac{\sqrt[7]{x+4}}{6} \newlinef1(x)=x+467 f^{-1}(x)=\sqrt[7]{\frac{x+4}{6}} \newlinef1(x)=x67+4 f^{-1}(x)=\sqrt[7]{\frac{x}{6}}+4 \newlinef1(x)=x76+4 f^{-1}(x)=\frac{\sqrt[7]{x}}{6}+4

Full solution

Q. For the function f(x)=6x74 f(x)=6 x^{7}-4 , find f1(x) f^{-1}(x) .\newlinef1(x)=x+476 f^{-1}(x)=\frac{\sqrt[7]{x+4}}{6} \newlinef1(x)=x+467 f^{-1}(x)=\sqrt[7]{\frac{x+4}{6}} \newlinef1(x)=x67+4 f^{-1}(x)=\sqrt[7]{\frac{x}{6}}+4 \newlinef1(x)=x76+4 f^{-1}(x)=\frac{\sqrt[7]{x}}{6}+4
  1. Define Original Function: To find the inverse function, f1(x)f^{-1}(x), we need to switch the roles of xx and yy in the original function and then solve for yy. The original function is f(x)=6x74f(x) = 6x^7 - 4, which we can write as y=6x74y = 6x^7 - 4.
  2. Replace yy with xx: Replace yy with xx to begin finding the inverse function: x=6y74x = 6y^7 - 4.
  3. Isolate y term: Add 44 to both sides of the equation to isolate the term containing yy: x+4=6y7x + 4 = 6y^7.
  4. Divide by 66: Divide both sides of the equation by 66 to further isolate the y term: (x+4)/6=y7(x + 4)/6 = y^7.
  5. Take 77th root: Take the 77th root of both sides of the equation to solve for yy: y=x+467y = \sqrt[7]{\frac{x + 4}{6}}.
  6. Express Inverse Function: Replace yy with f1(x)f^{-1}(x) to express the inverse function: f1(x)=x+467f^{-1}(x) = \sqrt[7]{\frac{x + 4}{6}}.

More problems from Multiplication with rational exponents