Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=(5)/(3x+4), find 
f^(-1)(x).
Answer: 
f^(-1)(x)=

For the function f(x)=53x+4 f(x)=\frac{5}{3 x+4} , find f1(x) f^{-1}(x) .\newlineAnswer: f1(x)= f^{-1}(x)=

Full solution

Q. For the function f(x)=53x+4 f(x)=\frac{5}{3 x+4} , find f1(x) f^{-1}(x) .\newlineAnswer: f1(x)= f^{-1}(x)=
  1. Replace with yy: To find the inverse function, we first replace f(x)f(x) with yy:y=53x+4y = \frac{5}{3x+4}
  2. Swap x and y: Next, we swap x and y to find the inverse: x=53y+4x = \frac{5}{3y+4}
  3. Solve for yy: Now, we solve for yy to get the inverse function. Multiply both sides by (3y+4)(3y+4) to eliminate the fraction:\newlinex(3y+4)=5x(3y+4) = 5
  4. Distribute xx: Distribute xx on the left side:\newline3xy+4x=53xy + 4x = 5
  5. Isolate terms with yy: Subtract 4x4x from both sides to isolate terms with yy on one side:\newline3xy=54x3xy = 5 - 4x
  6. Solve for y: Divide both sides by 3x3x to solve for y:\newliney=54x3xy = \frac{5 - 4x}{3x}
  7. Replace yy with f1(x)f^{-1}(x): This is the inverse function, so we replace yy with f1(x)f^{-1}(x):f1(x)=54x3xf^{-1}(x) = \frac{5 - 4x}{3x}

More problems from Multiplication with rational exponents