Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=4x^((1)/(5)), find 
f^(-1)(x).

f^(-1)(x)=((x)/(4))^(5)

f^(-1)(x)=(x^(5))/(4)

f^(-1)(x)=(x^((1)/(5)))/(4)

f^(-1)(x)=(4x)^(5)

For the function f(x)=4x15 f(x)=4 x^{\frac{1}{5}} , find f1(x) f^{-1}(x) .\newlinef1(x)=(x4)5 f^{-1}(x)=\left(\frac{x}{4}\right)^{5} \newlinef1(x)=x54 f^{-1}(x)=\frac{x^{5}}{4} \newlinef1(x)=x154 f^{-1}(x)=\frac{x^{\frac{1}{5}}}{4} \newlinef1(x)=(4x)5 f^{-1}(x)=(4 x)^{5}

Full solution

Q. For the function f(x)=4x15 f(x)=4 x^{\frac{1}{5}} , find f1(x) f^{-1}(x) .\newlinef1(x)=(x4)5 f^{-1}(x)=\left(\frac{x}{4}\right)^{5} \newlinef1(x)=x54 f^{-1}(x)=\frac{x^{5}}{4} \newlinef1(x)=x154 f^{-1}(x)=\frac{x^{\frac{1}{5}}}{4} \newlinef1(x)=(4x)5 f^{-1}(x)=(4 x)^{5}
  1. Rewrite with y: To find the inverse function, f1(x)f^{-1}(x), we need to switch the roles of xx and yy in the original function and then solve for yy. Let's start by rewriting the function with yy instead of f(x)f(x):\newliney=4x15y = 4x^{\frac{1}{5}}
  2. Switch x and y: Now, switch x and y to find the inverse: x=4y1/5x = 4y^{1/5}
  3. Isolate y: To solve for y, we need to isolate y on one side of the equation. Start by dividing both sides by 44: \newlinex4=y15\frac{x}{4} = y^{\frac{1}{5}}
  4. Raise to power of 55: Now, raise both sides of the equation to the power of 55 to eliminate the fifth root on the right side:\newline(\frac{x}{\(4\)})^\(5 = (y^{\frac{11}{55}})^55
  5. Simplify right side: Simplifying the right side, we get yy by itself because (y15)5=y(y^{\frac{1}{5}})^5 = y:(x4)5=y\left(\frac{x}{4}\right)^5 = y
  6. Inverse function: Now we have the inverse function: f1(x)=(x4)5f^{-1}(x) = \left(\frac{x}{4}\right)^5

More problems from Multiplication with rational exponents