Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=3x^((1)/(3)), find 
f^(-1)(x).

f^(-1)(x)=3x^(3)

f^(-1)(x)=((x)/(3))^((1)/(3))

f^(-1)(x)=(x^(3))/(3)

f^(-1)(x)=((x)/(3))^(3)

For the function f(x)=3x13 f(x)=3 x^{\frac{1}{3}} , find f1(x) f^{-1}(x) .\newlinef1(x)=3x3 f^{-1}(x)=3 x^{3} \newlinef1(x)=(x3)13 f^{-1}(x)=\left(\frac{x}{3}\right)^{\frac{1}{3}} \newlinef1(x)=x33 f^{-1}(x)=\frac{x^{3}}{3} \newlinef1(x)=(x3)3 f^{-1}(x)=\left(\frac{x}{3}\right)^{3}

Full solution

Q. For the function f(x)=3x13 f(x)=3 x^{\frac{1}{3}} , find f1(x) f^{-1}(x) .\newlinef1(x)=3x3 f^{-1}(x)=3 x^{3} \newlinef1(x)=(x3)13 f^{-1}(x)=\left(\frac{x}{3}\right)^{\frac{1}{3}} \newlinef1(x)=x33 f^{-1}(x)=\frac{x^{3}}{3} \newlinef1(x)=(x3)3 f^{-1}(x)=\left(\frac{x}{3}\right)^{3}
  1. Rewrite function with y: To find the inverse function, f1(x)f^{-1}(x), we need to switch the roles of xx and yy in the original function and then solve for yy. Let's start by rewriting the function with yy instead of f(x)f(x):\newliney=3x13y = 3x^{\frac{1}{3}}
  2. Switch x and y: Now, switch x and y to find the inverse: x=3y(1/3)x = 3y^{(1/3)}
  3. Isolate y: To solve for y, we need to isolate y on one side of the equation. Start by dividing both sides by 33:x3=y13\frac{x}{3} = y^{\frac{1}{3}}
  4. Eliminate cube root: Now, raise both sides of the equation to the power of 33 to eliminate the cube root: (x3)3=(y13)3(\frac{x}{3})^3 = (y^{\frac{1}{3}})^3
  5. Simplify and find inverse: Simplifying both sides gives us: \newlineegin{equation}(\frac{x}{33})^33 = y\end{equation}
  6. Simplify and find inverse: Simplifying both sides gives us:\newline(x3)3=y(\frac{x}{3})^3 = yWe have now isolated yy and found the inverse function:\newlinef1(x)=(x3)3f^{-1}(x) = (\frac{x}{3})^3

More problems from Multiplication with rational exponents