Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
following. Express your answers i
\newline
(b)
25
3
×
(
1
125
)
−
3
\quad \sqrt[3]{25} \times\left(\frac{1}{\sqrt{125}}\right)^{-3}
3
25
×
(
125
1
)
−
3
View step-by-step help
Home
Math Problems
Algebra 2
Sum of finite series starts from 1
Full solution
Q.
following. Express your answers i
\newline
(b)
25
3
×
(
1
125
)
−
3
\quad \sqrt[3]{25} \times\left(\frac{1}{\sqrt{125}}\right)^{-3}
3
25
×
(
125
1
)
−
3
Simplify Cube Root:
We need to simplify the expression
25
3
×
(
1
125
)
−
3
\sqrt[3]{25} \times \left(\frac{1}{\sqrt{125}}\right)^{-3}
3
25
×
(
125
1
)
−
3
. Let's start by simplifying each part separately.
Simplify
Fraction
:
First, we simplify
25
3
\sqrt[3]{25}
3
25
. The cube root of
25
25
25
is not a
whole number
, but we can leave it in radical form as
25
3
\sqrt[3]{25}
3
25
.
Raise to Power:
Next, we simplify
(
1
125
)
−
3
\left(\frac{1}{\sqrt{125}}\right)^{-3}
(
125
1
)
−
3
. We know that
125
=
5
3
=
5
\sqrt{125} = \sqrt{5^3} = 5
125
=
5
3
=
5
, so
1
125
=
1
5
\frac{1}{\sqrt{125}} = \frac{1}{5}
125
1
=
5
1
.
Calculate Result:
Now, we raise
1
5
\frac{1}{5}
5
1
to the power of
−
3
-3
−
3
, which is the same as taking the reciprocal and raising it to the power of
3
3
3
:
(
1
5
)
−
3
=
5
3
\left(\frac{1}{5}\right)^{-3} = 5^3
(
5
1
)
−
3
=
5
3
.
Multiply by Cube Root:
Calculating
5
3
5^3
5
3
gives us
5
×
5
×
5
=
125
5 \times 5 \times 5 = 125
5
×
5
×
5
=
125
.
Final Answer:
Now we multiply
25
3
\sqrt[3]{25}
3
25
by
125
125
125
. Since we cannot simplify
25
3
\sqrt[3]{25}
3
25
further, the final answer is
125
×
25
3
125 \times \sqrt[3]{25}
125
×
3
25
.
More problems from Sum of finite series starts from 1
Question
Find the sum of the finite arithmetic series.
∑
n
=
1
10
(
7
n
+
4
)
\sum_{n=1}^{10} (7n+4)
∑
n
=
1
10
(
7
n
+
4
)
\newline
______
Get tutor help
Posted 1 year ago
Question
Type the missing number in this sequence: `55,\59,\63,\text{_____},\71,\75,\79`
Get tutor help
Posted 9 months ago
Question
Type the missing number in this sequence: `2, 4 8`, ______,`32`
Get tutor help
Posted 9 months ago
Question
What kind of sequence is this?
2
,
10
,
50
,
250
,
…
2, 10, 50, 250, \ldots
2
,
10
,
50
,
250
,
…
Choices:Choices:
\newline
[A]arithmetic
\text{[A]arithmetic}
[A]arithmetic
\newline
[B]geometric
\text{[B]geometric}
[B]geometric
\newline
[C]both
\text{[C]both}
[C]both
\newline
[D]neither
\text{[D]neither}
[D]neither
Get tutor help
Posted 9 months ago
Question
What is the missing number in this pattern?
1
,
4
,
9
,
16
,
25
,
36
,
49
,
64
,
81
,
_
_
_
_
1, 4, 9, 16, 25, 36, 49, 64, 81, \_\_\_\_
1
,
4
,
9
,
16
,
25
,
36
,
49
,
64
,
81
,
____
Get tutor help
Posted 1 year ago
Question
Classify the series.
∑
n
=
0
12
(
n
+
2
)
3
\sum_{n = 0}^{12} (n + 2)^3
∑
n
=
0
12
(
n
+
2
)
3
\newline
Choices:
\newline
[A]arithmetic
\text{[A]arithmetic}
[A]arithmetic
\newline
[B]geometric
\text{[B]geometric}
[B]geometric
\newline
[C]both
\text{[C]both}
[C]both
\newline
[D]neither
\text{[D]neither}
[D]neither
Get tutor help
Posted 9 months ago
Question
Find the first three partial sums of the series.
\newline
1
+
6
+
11
+
16
+
21
+
26
+
⋯
1 + 6 + 11 + 16 + 21 + 26 + \cdots
1
+
6
+
11
+
16
+
21
+
26
+
⋯
\newline
Write your answers as integers or fractions in simplest form.
\newline
S
1
=
S_1 =
S
1
=
____
\newline
S
2
=
S_2 =
S
2
=
____
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Find the third partial sum of the series.
\newline
3
+
9
+
15
+
21
+
27
+
33
+
⋯
3 + 9 + 15 + 21 + 27 + 33 + \cdots
3
+
9
+
15
+
21
+
27
+
33
+
⋯
\newline
Write your answer as an integer or a fraction in simplest form.
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Find the first three partial sums of the series.
\newline
1
+
7
+
13
+
19
+
25
+
31
+
⋯
1 + 7 + 13 + 19 + 25 + 31 + \cdots
1
+
7
+
13
+
19
+
25
+
31
+
⋯
\newline
Write your answers as integers or fractions in simplest form.
\newline
S
1
=
S_1 =
S
1
=
____
\newline
S
2
=
S_2 =
S
2
=
____
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Does the infinite geometric series converge or diverge?
\newline
1
+
3
4
+
9
16
+
27
64
+
⋯
1 + \frac{3}{4} + \frac{9}{16} + \frac{27}{64} + \cdots
1
+
4
3
+
16
9
+
64
27
+
⋯
\newline
Choices:
\newline
[A]converge
\text{[A]converge}
[A]converge
\newline
[B]diverge
\text{[B]diverge}
[B]diverge
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant