Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Follow the instructions below.
Write 
a*a^(2) without exponents.

a*a^(2)=
Fill in the blank.

a*a^(2)=a^(◻)

Follow the instructions below.\newlineWrite aa2 a \cdot a^{2} without exponents.\newlineaa2= a \cdot a^{2}= \newlineFill in the blank.\newlineaa2=a a \cdot a^{2}=a^{\square}

Full solution

Q. Follow the instructions below.\newlineWrite aa2 a \cdot a^{2} without exponents.\newlineaa2= a \cdot a^{2}= \newlineFill in the blank.\newlineaa2=a a \cdot a^{2}=a^{\square}
  1. Identify Expression: We are given the expression a×a2a \times a^{2}. To simplify this expression without exponents, we need to use the property of exponents that states when multiplying like bases, we add the exponents.
  2. Apply Exponent Property: The base here is aa, and we have a1×a2a^{1} \times a^{2} (since aa is the same as a1a^{1}). According to the property of exponents, we add the exponents when multiplying like bases.
  3. Add Exponents: Adding the exponents 11 and 22 gives us a(1+2)a^{(1+2)}.
  4. Simplify Exponents: Simplifying 1+21+2 gives us 33, so a(1+2)a^{(1+2)} becomes a3a^{3}.
  5. Final Simplified Expression: Therefore, a×a2a \times a^{2} simplifies to a3a^{3}.

More problems from Simplify radical expressions with variables II