Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find xx value from the equation \newline372x=54x+113^{7-2x}=5^{4x+11}

Full solution

Q. Find xx value from the equation \newline372x=54x+113^{7-2x}=5^{4x+11}
  1. Take ln of both sides: Given the equation 372x=54x+113^{7-2x} = 5^{4x+11}, we will use logarithms to solve for xx.\newlineTake the natural logarithm (ln) of both sides of the equation to utilize the property that ln(ab)=bln(a)\ln(a^b) = b\cdot\ln(a).\newlineln(372x)=ln(54x+11)\ln(3^{7-2x}) = \ln(5^{4x+11})
  2. Apply logarithmic property: Apply the logarithmic property to both sides of the equation.\newline(72x)ln(3)=(4x+11)ln(5)(7-2x)\ln(3) = (4x+11)\ln(5)
  3. Distribute ln values: Distribute ln(3)\ln(3) and ln(5)\ln(5) on both sides of the equation.\newline7ln(3)2xln(3)=4xln(5)+11ln(5)7\cdot\ln(3) - 2x\cdot\ln(3) = 4x\cdot\ln(5) + 11\cdot\ln(5)
  4. Rearrange terms: Rearrange the terms to isolate xx on one side of the equation.\newline2xln(3)4xln(5)=11ln(5)7ln(3)-2x\ln(3) - 4x\ln(5) = 11\ln(5) - 7\ln(3)
  5. Factor out xx: Factor out xx from the left side of the equation.\newlinex(2ln(3)4ln(5))=11ln(5)7ln(3)x*(-2*\ln(3) - 4*\ln(5)) = 11*\ln(5) - 7*\ln(3)
  6. Divide to solve for xx: Divide both sides by (2ln(3)4ln(5))(-2\ln(3) - 4\ln(5)) to solve for xx.x=11ln(5)7ln(3)2ln(3)4ln(5)x = \frac{11\ln(5) - 7\ln(3)}{-2\ln(3) - 4\ln(5)}
  7. Calculate numerical value: Calculate the numerical value of xx using the values of ln(3)\ln(3) and ln(5)\ln(5).x(11ln(5)7ln(3))/(2ln(3)4ln(5))x \approx (11\cdot\ln(5) - 7\cdot\ln(3)) / (-2\cdot\ln(3) - 4\cdot\ln(5))

More problems from Solve complex trigonomentric equations