Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the zeros of the function 
f(x)=x^(2)+7.8 x+12.3. Round values to the nearest hundredth (if necessary).
Answer: 
x=

Find the zeros of the function f(x)=x2+7.8x+12.3 f(x)=x^{2}+7.8 x+12.3 . Round values to the nearest hundredth (if necessary).\newlineAnswer: x= x=

Full solution

Q. Find the zeros of the function f(x)=x2+7.8x+12.3 f(x)=x^{2}+7.8 x+12.3 . Round values to the nearest hundredth (if necessary).\newlineAnswer: x= x=
  1. Identify equation type: Identify the type of equation and the method to find its zeros.\newlineThe given function is a quadratic equation of the form f(x)=ax2+bx+cf(x) = ax^2 + bx + c. To find the zeros of the function, we can use the quadratic formula, which is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where aa, bb, and cc are the coefficients of the quadratic equation.
  2. Apply quadratic formula: Apply the quadratic formula to the given function.\newlineFor the function f(x)=x2+7.8x+12.3f(x) = x^2 + 7.8x + 12.3, the coefficients are a=1a = 1, b=7.8b = 7.8, and c=12.3c = 12.3. Plugging these values into the quadratic formula gives us:\newlinex=7.8±7.824112.321x = \frac{-7.8 \pm \sqrt{7.8^2 - 4 \cdot 1 \cdot 12.3}}{2 \cdot 1}
  3. Calculate discriminant: Calculate the discriminant (the part under the square root in the quadratic formula).\newlineThe discriminant is b24acb^2 - 4ac, so we calculate:\newline7.824×1×12.3=60.8449.2=11.647.8^2 - 4\times 1\times 12.3 = 60.84 - 49.2 = 11.64
  4. Calculate square root: Calculate the square root of the discriminant. 11.643.41\sqrt{11.64} \approx 3.41
  5. Calculate possible values: Calculate the two possible values for xx using the quadratic formula.x=7.8±3.412x = \frac{{-7.8 \pm 3.41}}{2}This gives us two solutions:x1=(7.8+3.41)2x_1 = \frac{{(-7.8 + 3.41)}}{2}x2=(7.83.41)2x_2 = \frac{{(-7.8 - 3.41)}}{2}
  6. Solve for x1x_1 and x2x_2: Solve for x1x_1 and x2x_2.x1=(7.8+3.41)22.195x_1 = \frac{(-7.8 + 3.41)}{2} \approx -2.195x2=(7.83.41)25.605x_2 = \frac{(-7.8 - 3.41)}{2} \approx -5.605
  7. Round solutions: Round the solutions to the nearest hundredth. \newlinex12.20x_1 \approx -2.20\newlinex25.61x_2 \approx -5.61

More problems from Find trigonometric functions using a calculator