Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the zeros of the function 
f(x)=x^(2)-10 x+17.5. Round values to the nearest hundredth (if necessary).
Answer: 
x=

Find the zeros of the function f(x)=x210x+17.5 f(x)=x^{2}-10 x+17.5 . Round values to the nearest hundredth (if necessary).\newlineAnswer: x= x=

Full solution

Q. Find the zeros of the function f(x)=x210x+17.5 f(x)=x^{2}-10 x+17.5 . Round values to the nearest hundredth (if necessary).\newlineAnswer: x= x=
  1. Quadratic Formula: To find the zeros of the function f(x)=x210x+17.5f(x) = x^2 - 10x + 17.5, we need to solve the quadratic equation x210x+17.5=0x^2 - 10x + 17.5 = 0. We can use the quadratic formula, which is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where aa, bb, and cc are the coefficients of the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0. In our case, a=1a = 1, b=10b = -10, and c=17.5c = 17.5.
  2. Calculate Discriminant: First, we calculate the discriminant, which is the part under the square root in the quadratic formula: b24acb^2 - 4ac.\newlineDiscriminant = (10)24(1)(17.5)=10070=30(-10)^2 - 4(1)(17.5) = 100 - 70 = 30.
  3. Apply Quadratic Formula: Now we can apply the quadratic formula with the values of aa, bb, and the discriminant.x=(10)±302×1x = \frac{-(-10) \pm \sqrt{30}}{2 \times 1}x=10±302x = \frac{10 \pm \sqrt{30}}{2}
  4. Calculate Plus Value: We will now calculate the two possible values for xx by considering the plus and minus in the formula separately.\newlineFor the plus:\newlinex=(10+30)/2x = (10 + \sqrt{30}) / 2\newlinex(10+5.48)/2x \approx (10 + 5.48) / 2\newlinex15.48/2x \approx 15.48 / 2\newlinex7.74x \approx 7.74
  5. Calculate Minus Value: For the minus:\newlinex=10302x = \frac{10 - \sqrt{30}}{2}\newlinex105.482x \approx \frac{10 - 5.48}{2}\newlinex4.522x \approx \frac{4.52}{2}\newlinex2.26x \approx 2.26

More problems from Find trigonometric functions using a calculator