Q. Find the zeros of the function f(x)=2x2+7.3x−1. Round values to the nearest hundredth (if necessary).Answer: x=
Set up quadratic equation: Set up the quadratic equation to find the zeros.To find the zeros of the function f(x)=2x2+7.3x−1, we need to solve the equation 2x2+7.3x−1=0.
Use quadratic formula: Use the quadratic formula to solve for x. The quadratic formula is x=2a−b±b2−4ac, where a, b, and c are the coefficients from the quadratic equation ax2+bx+c=0. In this case, a=2, b=7.3, and c=−1.
Calculate discriminant: Calculate the discriminant.The discriminant is the part of the quadratic formula under the square root: b2−4ac. Let's calculate it:Discriminant = (7.3)2−4×2×(−1)=53.29+8=61.29.
Calculate possible values for x: Calculate the two possible values for x using the quadratic formula.x=2×2−7.3±61.29x=4−7.3±7.827071
Calculate zeros: Calculate the two zeros by solving for x.First zero:x=4−7.3+7.827071x=40.527071x≈0.13Second zero:x=4−7.3−7.827071x=4−15.127071x≈−3.78
More problems from Find trigonometric functions using a calculator