Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the zeros of the function 
f(x)=2x^(2)-18 x+35.4. Round values to the nearest hundredth (if necessary).
Answer: 
x=

Find the zeros of the function f(x)=2x218x+35.4 f(x)=2 x^{2}-18 x+35.4 . Round values to the nearest hundredth (if necessary).\newlineAnswer: x= x=

Full solution

Q. Find the zeros of the function f(x)=2x218x+35.4 f(x)=2 x^{2}-18 x+35.4 . Round values to the nearest hundredth (if necessary).\newlineAnswer: x= x=
  1. Quadratic Formula: To find the zeros of the function f(x)=2x218x+35.4f(x) = 2x^2 - 18x + 35.4, we need to solve the quadratic equation 2x218x+35.4=02x^2 - 18x + 35.4 = 0. We can use the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=2a = 2, b=18b = -18, and c=35.4c = 35.4.
  2. Calculate Discriminant: First, calculate the discriminant, which is b24acb^2 - 4ac. Here, b=18b = -18, a=2a = 2, and c=35.4c = 35.4. So, the discriminant is (18)24×2×35.4(-18)^2 - 4 \times 2 \times 35.4.
  3. Apply Quadratic Formula: Calculating the discriminant: (18)24×2×35.4=3248×35.4=324283.2=40.8(-18)^2 - 4 \times 2 \times 35.4 = 324 - 8 \times 35.4 = 324 - 283.2 = 40.8.
  4. Calculate Square Root: Now, we can apply the quadratic formula. The two solutions for xx will be:\newlinex=(18)±40.8(2×2)x = \frac{-(-18) \pm \sqrt{40.8}}{(2 \times 2)}\newlinex=18±40.84x = \frac{18 \pm \sqrt{40.8}}{4}
  5. Find Zeros: Calculate the square root of the discriminant: 40.86.39\sqrt{40.8} \approx 6.39 (rounded to two decimal places).
  6. Find Zeros: Calculate the square root of the discriminant: 40.86.39\sqrt{40.8} \approx 6.39 (rounded to two decimal places).Now, plug the value of the square root back into the formula to find the two zeros:\newlinex=18+6.394x = \frac{18 + 6.39}{4} and x=186.394x = \frac{18 - 6.39}{4}
  7. Find Zeros: Calculate the square root of the discriminant: 40.86.39\sqrt{40.8} \approx 6.39 (rounded to two decimal places).Now, plug the value of the square root back into the formula to find the two zeros:\newlinex=18+6.394x = \frac{18 + 6.39}{4} and x=186.394x = \frac{18 - 6.39}{4}Calculate the two values for x:\newlinex18+6.39424.3946.10x \approx \frac{18 + 6.39}{4} \approx \frac{24.39}{4} \approx 6.10 (rounded to the nearest hundredth)\newlinex186.39411.6142.90x \approx \frac{18 - 6.39}{4} \approx \frac{11.61}{4} \approx 2.90 (rounded to the nearest hundredth)

More problems from Find trigonometric functions using a calculator