Q. Find the zeros of the function f(x)=−1.9x2+15x−26.5. Round values to the nearest hundredth (if necessary).Answer: x=
Identify Equation Type: Identify the type of equation and the method to find its zeros.The given function is a quadratic equation of the form ax2+bx+c=0. To find the zeros of the function, we can use the quadratic formulax=2a−b±b2−4ac, where a=−1.9, b=15, and c=−26.5.
Calculate Discriminant: Calculate the discriminant of the quadratic equation.The discriminant is given by b2−4ac. Let's calculate it using the given values:Discriminant = (15)2−4(−1.9)(−26.5)=225−4(1.9)(26.5)=225−201.4=23.6
Apply Quadratic Formula: Apply the quadratic formula to find the zeros.Now we will use the quadratic formula with the calculated discriminant:x=2×−1.9−15±23.6
Calculate Possible Values: Calculate the two possible values for x. First, we find the square root of the discriminant: 23.6≈4.86 Now we calculate the two possible values for x: x1=(−3.8)[−15+4.86]≈(−3.8)[−10.14]≈2.67x2=(−3.8)[−15−4.86]≈(−3.8)[−19.86]≈5.23
More problems from Find trigonometric functions using a calculator