Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the zeros of the function 
f(x)=-1.9x^(2)+15 x-26.5. Round values to the nearest hundredth (if necessary).
Answer: 
x=

Find the zeros of the function f(x)=1.9x2+15x26.5 f(x)=-1.9 x^{2}+15 x-26.5 . Round values to the nearest hundredth (if necessary).\newlineAnswer: x= x=

Full solution

Q. Find the zeros of the function f(x)=1.9x2+15x26.5 f(x)=-1.9 x^{2}+15 x-26.5 . Round values to the nearest hundredth (if necessary).\newlineAnswer: x= x=
  1. Identify Equation Type: Identify the type of equation and the method to find its zeros.\newlineThe given function is a quadratic equation of the form ax2+bx+c=0ax^2 + bx + c = 0. To find the zeros of the function, we can use the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=1.9a = -1.9, b=15b = 15, and c=26.5c = -26.5.
  2. Calculate Discriminant: Calculate the discriminant of the quadratic equation.\newlineThe discriminant is given by b24acb^2 - 4ac. Let's calculate it using the given values:\newlineDiscriminant = (15)24(1.9)(26.5)=2254(1.9)(26.5)=225201.4=23.6(15)^2 - 4(-1.9)(-26.5) = 225 - 4(1.9)(26.5) = 225 - 201.4 = 23.6
  3. Apply Quadratic Formula: Apply the quadratic formula to find the zeros.\newlineNow we will use the quadratic formula with the calculated discriminant:\newlinex=15±23.62×1.9x = \frac{-15 \pm \sqrt{23.6}}{2 \times -1.9}
  4. Calculate Possible Values: Calculate the two possible values for xx. First, we find the square root of the discriminant: 23.64.86\sqrt{23.6} \approx 4.86 Now we calculate the two possible values for xx: x1=[15+4.86](3.8)[10.14](3.8)2.67x_1 = \frac{[-15 + 4.86]}{(-3.8)} \approx \frac{[-10.14]}{(-3.8)} \approx 2.67 x2=[154.86](3.8)[19.86](3.8)5.23x_2 = \frac{[-15 - 4.86]}{(-3.8)} \approx \frac{[-19.86]}{(-3.8)} \approx 5.23

More problems from Find trigonometric functions using a calculator