Q. Find the zeros of the function f(x)=−1.8x2−8.3x−4.5. Round values to the nearest hundredth (if necessary).Answer: x=
Identify Equation Type: Identify the type of equation and the method to find its zeros.The given function is a quadratic equation of the form ax2+bx+c=0. To find the zeros of the function, we can use the quadratic formulax=2a−b±b2−4ac.
Apply Quadratic Formula: Apply the quadratic formula to the given function.For the function f(x)=−1.8x2−8.3x−4.5, the coefficients are a=−1.8, b=−8.3, and c=−4.5. Plugging these values into the quadratic formula gives us:x=2(−1.8)−(−8.3)±(−8.3)2−4(−1.8)(−4.5)
Simplify Discriminant: Simplify the expression under the square root (the discriminant). The discriminant is (−8.3)2−4(−1.8)(−4.5)=68.89−4(8.1)=68.89−32.4=36.49.
Calculate Square Root: Calculate the square root of the discriminant. 36.49=6.04.
Continue Quadratic Formula: Continue with the quadratic formula using the simplified discriminant. x=−3.68.3±6.04
Solve for Zeros: Solve for the two possible values of x.First zero:x=−3.68.3+6.04=−3.614.34≈−3.98Second zero:x=−3.68.3−6.04=−3.62.26≈−0.63
Round Zeros: Round the zeros to the nearest hundredth.First zero: x≈−3.98 (already rounded to the nearest hundredth)Second zero: x≈−0.63 (already rounded to the nearest hundredth)
More problems from Find trigonometric functions using a calculator