Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the zeros of the function 
f(x)=1.2x^(2)-12.7 x+27. Round values to the nearest hundredth (if necessary).
Answer: 
x=

Find the zeros of the function f(x)=1.2x212.7x+27 f(x)=1.2 x^{2}-12.7 x+27 . Round values to the nearest hundredth (if necessary).\newlineAnswer: x= x=

Full solution

Q. Find the zeros of the function f(x)=1.2x212.7x+27 f(x)=1.2 x^{2}-12.7 x+27 . Round values to the nearest hundredth (if necessary).\newlineAnswer: x= x=
  1. Set Quadratic Equation: Set the quadratic equation equal to zero to find its zeros.\newlinef(x)=1.2x212.7x+27=0f(x) = 1.2x^2 - 12.7x + 27 = 0
  2. Use Quadratic Formula: Use the quadratic formula to find the zeros of the function. The quadratic formula is given by x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where aa, bb, and cc are the coefficients of the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0. In this case, a=1.2a = 1.2, b=12.7b = -12.7, and c=27c = 27.
  3. Calculate Discriminant: Calculate the discriminant, which is the part under the square root in the quadratic formula: b24acb^2 - 4ac.\newlineDiscriminant = (12.7)24(1.2)(27)(-12.7)^2 - 4(1.2)(27)\newlineDiscriminant = 161.29129.6161.29 - 129.6\newlineDiscriminant = 31.6931.69
  4. Apply Quadratic Formula: Since the discriminant is positive, there will be two real and distinct solutions. Now, plug the values of aa, bb, and the discriminant into the quadratic formula to find the zeros.\newlinex=(12.7)±31.69(21.2)x = \frac{-(-12.7) \pm \sqrt{31.69}}{(2 \cdot 1.2)}\newlinex=12.7±31.692.4x = \frac{12.7 \pm \sqrt{31.69}}{2.4}
  5. Calculate Zeros: Calculate the two possible values for xx.\newlineFirst zero:\newlinex=12.7+31.692.4x = \frac{12.7 + \sqrt{31.69}}{2.4}\newlinex12.7+5.632.4x \approx \frac{12.7 + 5.63}{2.4}\newlinex18.332.4x \approx \frac{18.33}{2.4}\newlinex7.64x \approx 7.64\newlineSecond zero:\newlinex=12.731.692.4x = \frac{12.7 - \sqrt{31.69}}{2.4}\newlinex12.75.632.4x \approx \frac{12.7 - 5.63}{2.4}\newlinex7.072.4x \approx \frac{7.07}{2.4}\newlinex2.95x \approx 2.95

More problems from Find trigonometric functions using a calculator