Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the 
y-coordinate of the 
y-intercept of the polynomial function defined below.

f(x)=-(x-4)(4x-2)(x-2)^(3)
Answer:

Find the y y -coordinate of the y y -intercept of the polynomial function defined below.\newlinef(x)=(x4)(4x2)(x2)3 f(x)=-(x-4)(4 x-2)(x-2)^{3} \newlineAnswer:

Full solution

Q. Find the y y -coordinate of the y y -intercept of the polynomial function defined below.\newlinef(x)=(x4)(4x2)(x2)3 f(x)=-(x-4)(4 x-2)(x-2)^{3} \newlineAnswer:
  1. Evaluate f(x)f(x) at x=0x=0: To find the y-coordinate of the y-intercept of the function f(x)f(x), we need to evaluate f(x)f(x) when x=0x = 0. This is because the y-intercept occurs where the graph of the function crosses the y-axis, and the x-coordinate is always 00 at the y-axis.
  2. Substitute x=0x=0 into f(x)f(x): Substitute x=0x = 0 into the function f(x)=(x4)(4x2)(x2)3f(x) = -(x-4)(4x-2)(x-2)^{3}.\newlinef(0)=(04)(402)(02)3f(0) = -(0-4)(4\cdot 0-2)(0-2)^{3}
  3. Simplify the expression: Simplify the expression by performing the operations.\newlinef(0)=(4)(2)(2)3f(0) = -(-4)(-2)(-2)^{3}\newlinef(0)=(4)(2)(8)f(0) = -(-4)(-2)(-8)
  4. Continue simplifying: Continue simplifying the expression.\newlinef(0)=(4)×2×8f(0) = -(-4)\times 2\times 8\newlinef(0)=(32)×8f(0) = -(-32)\times 8\newlinef(0)=256f(0) = 256
  5. Find y-coordinate of y-intercept: The y-coordinate of the y-intercept is the value of f(0)f(0), which we have found to be 256256.

More problems from Domain and range of square root functions: equations