Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the volume of a right circular cone that has a height of 
13.7ft and a base with a circumference of 
18.4ft. Round your answer to the nearest tenth of a cubic foot.
Answer: 
ft^(3)

Find the volume of a right circular cone that has a height of 13.7ft 13.7 \mathrm{ft} and a base with a circumference of 18.4ft 18.4 \mathrm{ft} . Round your answer to the nearest tenth of a cubic foot.\newlineAnswer: ft3 \mathrm{ft}^{3}

Full solution

Q. Find the volume of a right circular cone that has a height of 13.7ft 13.7 \mathrm{ft} and a base with a circumference of 18.4ft 18.4 \mathrm{ft} . Round your answer to the nearest tenth of a cubic foot.\newlineAnswer: ft3 \mathrm{ft}^{3}
  1. Find Radius of Base: First, we need to find the radius of the base of the cone. The formula for the circumference CC of a circle is C=2πrC = 2\pi r, where rr is the radius. We can rearrange this formula to solve for rr: r=C2πr = \frac{C}{2\pi}.
  2. Calculate Radius: Now, let's plug in the given circumference of 18.418.4 feet into the formula to find the radius.\newliner=18.4ft2πr = \frac{18.4 \, \text{ft}}{2\pi}
  3. Use Volume Formula: Calculating the radius, we get:\newliner18.4ft/(2×3.14159)r \approx 18.4 \, \text{ft} / (2 \times 3.14159)\newliner18.4ft/6.28318r \approx 18.4 \, \text{ft} / 6.28318\newliner2.929ftr \approx 2.929 \, \text{ft}
  4. Substitute Values: Next, we use the formula for the volume VV of a cone, which is V=(13)πr2hV = (\frac{1}{3})\pi r^2 h, where rr is the radius and hh is the height.
  5. Calculate Volume: We substitute the values of rr and hh into the volume formula:\newlineV=13π(2.929 ft)2(13.7 ft)V = \frac{1}{3}\pi(2.929 \text{ ft})^2(13.7 \text{ ft})
  6. Round Volume: Now, we calculate the volume:\newlineV13×3.14159×(2.929ft)2×13.7ftV \approx \frac{1}{3} \times 3.14159 \times (2.929 \, \text{ft})^2 \times 13.7 \, \text{ft}\newlineV13×3.14159×8.5792ft2×13.7ftV \approx \frac{1}{3} \times 3.14159 \times 8.5792 \, \text{ft}^2 \times 13.7 \, \text{ft}\newlineV122.516ft3V \approx 122.516 \, \text{ft}^3
  7. Round Volume: Now, we calculate the volume:\newlineV13×3.14159×(2.929 ft)2×13.7 ftV \approx \frac{1}{3} \times 3.14159 \times (2.929 \text{ ft})^2 \times 13.7 \text{ ft}\newlineV13×3.14159×8.5792 ft2×13.7 ftV \approx \frac{1}{3} \times 3.14159 \times 8.5792 \text{ ft}^2 \times 13.7 \text{ ft}\newlineV122.516 ft3V \approx 122.516 \text{ ft}^3Finally, we round the volume to the nearest tenth of a cubic foot:\newlineV122.5 ft3V \approx 122.5 \text{ ft}^3

More problems from Evaluate variable expressions: word problems