Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the volume of a pyramid with a square base, where the side length of the base is 13.2 in and the height of the pyramid is 
7.3in. Round your answer to the nearest tenth of a cubic inch.
Answer: in 
^(3)

Find the volume of a pyramid with a square base, where the side length of the base is 1313.22 in and the height of the pyramid is 7.3in 7.3 \mathrm{in} . Round your answer to the nearest tenth of a cubic inch.\newlineAnswer: in 3 ^{3}

Full solution

Q. Find the volume of a pyramid with a square base, where the side length of the base is 1313.22 in and the height of the pyramid is 7.3in 7.3 \mathrm{in} . Round your answer to the nearest tenth of a cubic inch.\newlineAnswer: in 3 ^{3}
  1. Calculate Base Area: The formula for the volume of a pyramid with a square base is V=13×base_area×heightV = \frac{1}{3} \times \text{base\_area} \times \text{height}. The base area of a square is found by squaring the side length. So, we need to calculate the base area first.\newlineBase area = side_length2=13.2in×13.2in\text{side\_length}^2 = 13.2 \, \text{in} \times 13.2 \, \text{in}.
  2. Calculate Volume: Now, let's calculate the base area.\newlineBase area = 13.2in×13.2in=174.24in213.2 \, \text{in} \times 13.2 \, \text{in} = 174.24 \, \text{in}^2.
  3. Round to Nearest Tenth: Next, we use the volume formula for the pyramid, substituting the base area and the height.\newlineVolume = (13)×base_area×height=(13)×174.24 in2×7.3 in(\frac{1}{3}) \times \text{base\_area} \times \text{height} = (\frac{1}{3}) \times 174.24 \text{ in}^2 \times 7.3 \text{ in}.
  4. Round to Nearest Tenth: Next, we use the volume formula for the pyramid, substituting the base area and the height. Volume = (13)×base_area×height=(13)×174.24 in2×7.3 in(\frac{1}{3}) \times \text{base\_area} \times \text{height} = (\frac{1}{3}) \times 174.24 \text{ in}^2 \times 7.3 \text{ in}. Now, let's calculate the volume. Volume = (13)×174.24 in2×7.3 in=58.08 in2×7.3 in=423.984 in3(\frac{1}{3}) \times 174.24 \text{ in}^2 \times 7.3 \text{ in} = 58.08 \text{ in}^2 \times 7.3 \text{ in} = 423.984 \text{ in}^3.
  5. Round to Nearest Tenth: Next, we use the volume formula for the pyramid, substituting the base area and the height.\newlineVolume = (13)×base_area×height=(13)×174.24 in2×7.3 in(\frac{1}{3}) \times \text{base\_area} \times \text{height} = (\frac{1}{3}) \times 174.24 \text{ in}^2 \times 7.3 \text{ in}.Now, let's calculate the volume.\newlineVolume = (13)×174.24 in2×7.3 in=58.08 in2×7.3 in=423.984 in3(\frac{1}{3}) \times 174.24 \text{ in}^2 \times 7.3 \text{ in} = 58.08 \text{ in}^2 \times 7.3 \text{ in} = 423.984 \text{ in}^3.Finally, we round the volume to the nearest tenth of a cubic inch.\newlineVolume 424.0 in3\approx 424.0 \text{ in}^3 (rounded to the nearest tenth).

More problems from Evaluate variable expressions: word problems