Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Find the value of
A
A
A
that makes the following equation true for all values of
x
x
x
.
\newline
3
x
−
3
x
−
2
=
A
⋅
3
x
A
=
\begin{array}{l} 3^{x}-3^{x-2}=A \cdot 3^{x} \\ A= \end{array}
3
x
−
3
x
−
2
=
A
⋅
3
x
A
=
View step-by-step help
Home
Math Problems
Algebra 2
Domain and range of absolute value functions: equations
Full solution
Q.
Find the value of
A
A
A
that makes the following equation true for all values of
x
x
x
.
\newline
3
x
−
3
x
−
2
=
A
⋅
3
x
A
=
\begin{array}{l} 3^{x}-3^{x-2}=A \cdot 3^{x} \\ A= \end{array}
3
x
−
3
x
−
2
=
A
⋅
3
x
A
=
Given equation:
We are given the equation:
\newline
3
x
−
3
x
−
2
=
A
⋅
3
x
3^{x} - 3^{x-2} = A\cdot3^{x}
3
x
−
3
x
−
2
=
A
⋅
3
x
\newline
We need to find the value of
A
A
A
that makes this equation true for all
x
x
x
.
Simplifying the left side:
First, let's simplify the left side of the equation by factoring out the common term
3
x
3^{x}
3
x
:
\newline
3
x
−
3
x
⋅
3
−
2
=
A
⋅
3
x
3^{x} - 3^{x}\cdot3^{-2} = A\cdot3^{x}
3
x
−
3
x
⋅
3
−
2
=
A
⋅
3
x
Rewriting
3
−
2
3^{-2}
3
−
2
:
Now, we can rewrite
3
−
2
3^{-2}
3
−
2
as
1
/
3
2
1/3^2
1/
3
2
, which is
1
/
9
1/9
1/9
:
3
x
−
3
x
∗
(
1
/
9
)
=
A
∗
3
x
3^{x} - 3^{x}*(1/9) = A*3^{x}
3
x
−
3
x
∗
(
1/9
)
=
A
∗
3
x
Factoring out
3
x
3^{x}
3
x
:
Next, we can factor out
3
x
3^{x}
3
x
from both terms on the left side:
\newline
3
x
×
(
1
−
1
9
)
=
A
⋅
3
x
3^{x} \times (1 - \frac{1}{9}) = A\cdot3^{x}
3
x
×
(
1
−
9
1
)
=
A
⋅
3
x
Simplifying the expression:
Now, we simplify the expression in the parentheses:
\newline
1
−
1
9
=
8
9
1 - \frac{1}{9} = \frac{8}{9}
1
−
9
1
=
9
8
\newline
So, we have:
\newline
3
x
×
(
8
9
)
=
A
×
3
x
3^{x} \times \left(\frac{8}{9}\right) = A\times3^{x}
3
x
×
(
9
8
)
=
A
×
3
x
Equating coefficients:
Since we want the equation to be true for all
x
x
x
, we can equate the coefficients of
3
x
3^{x}
3
x
on both sides of the equation:
\newline
8
9
=
A
\frac{8}{9} = A
9
8
=
A
Value of A:
Therefore, the value of
A
A
A
that makes the equation true for all
x
x
x
is
8
9
\frac{8}{9}
9
8
.
More problems from Domain and range of absolute value functions: equations
Question
What is the domain of this function?
\newline
(
9
,
–
2
)
(
6
,
–
10
)
(
–
3
,
9
)
(
5
,
2
)
(9,–2)(6,–10)(–3,9)(5,2)
(
9
,
–2
)
(
6
,
–10
)
(
–3
,
9
)
(
5
,
2
)
\newline
Choices:
\newline
(
A
)
{
–
3
,
5
,
6
,
9
}
(
B
)
{
–
10
,
–
2
,
2
,
9
}
(
C
)
{
2
,
5
,
6
,
9
}
(
D
)
{
–
6
,
–
3
,
5
,
9
}
(A)\{–3,5,6,9\}\newline(B)\{–10,–2,2,9\}\newline(C)\{2,5,6,9\}\newline(D)\{–6,–3,5,9\}
(
A
)
{
–3
,
5
,
6
,
9
}
(
B
)
{
–10
,
–2
,
2
,
9
}
(
C
)
{
2
,
5
,
6
,
9
}
(
D
)
{
–6
,
–3
,
5
,
9
}
Get tutor help
Posted 1 year ago
Question
Look at this set of ordered pairs:
\newline
(
2
,
14
)
(2, 14)
(
2
,
14
)
\newline
(
10
,
12
)
(10, 12)
(
10
,
12
)
\newline
(
3
,
−
19
)
(3, -19)
(
3
,
−
19
)
\newline
Is this relation a function?
\newline
Choices:
\newline
[[yes]
\text{[[yes]}
[[yes]
[no]]
\text{[no]]}
[no]]
Get tutor help
Posted 1 year ago
Question
Use the following function rule to find
f
(
11
)
f(11)
f
(
11
)
.
\newline
f
(
x
)
=
−
10
−
7
x
f(x) = -10 - 7x
f
(
x
)
=
−
10
−
7
x
\newline
f
(
11
)
=
f(11) =
f
(
11
)
=
_____
Get tutor help
Posted 1 year ago
Question
Find the slope of the line
y
=
−
3
x
−
2
5
y = -3x - \frac{2}{5}
y
=
−
3
x
−
5
2
.
\newline
Simplify your answer and write it as a proper fraction, improper fraction, or integer.
\newline
_
_
_
_
_
\_\_\_\_\_
_____
Get tutor help
Posted 1 year ago
Question
A line has a slope of
3
3
3
and passes through the point
(
−
2
,
−
10
)
(-2,-10)
(
−
2
,
−
10
)
. Write its equation in slope-intercept form.
\newline
Write your answer using integers, proper fractions, and improper fractions in simplest form.
Get tutor help
Posted 1 year ago
Question
What is the range of this function?
\newline
y = |x|
\newline
Choices:
\newline
all real numbers
\text{all real numbers}
all real numbers
\newline
{
y
∣
y
≥
0
}
\{y \mid y \geq 0\}
{
y
∣
y
≥
0
}
\newline
{
y
∣
y
≤
0
}
\{y \mid y \leq 0\}
{
y
∣
y
≤
0
}
\newline
{
y
∣
y
>
0
}
\{y \mid y > 0\}
{
y
∣
y
>
0
}
Get tutor help
Posted 1 year ago
Question
Find
g
(
x
)
g(x)
g
(
x
)
, where
g
(
x
)
g(x)
g
(
x
)
is the translation
1
1
1
unit down of
f
(
x
)
=
∣
x
∣
f(x) = |x|
f
(
x
)
=
∣
x
∣
.
\newline
Write your answer in the form
a
∣
x
−
h
∣
+
k
a|x - h| + k
a
∣
x
−
h
∣
+
k
, where
a
a
a
,
h
h
h
, and
k
k
k
are integers.
\newline
g
(
x
)
=
g(x) =
g
(
x
)
=
______
\newline
Get tutor help
Posted 1 year ago
Question
What is the domain of this function?
\newline
(
8
,
–
1
)
(
7
,
–
11
)
(
–
4
,
10
)
(
4
,
3
)
(8,–1)(7,–11)(–4,10)(4,3)
(
8
,
–1
)
(
7
,
–11
)
(
–4
,
10
)
(
4
,
3
)
\newline
Choices:
\newline
(
A
)
{
–
4
,
4
,
7
,
8
}
(A)\{–4,4,7,8\}\newline
(
A
)
{
–4
,
4
,
7
,
8
}
(
B
)
{
–
11
,
–
1
,
3
,
10
}
(B)\{–11,–1,3,10\}\newline
(
B
)
{
–11
,
–1
,
3
,
10
}
(
C
)
{
3
,
4
,
7
,
8
}
(C)\{3,4,7,8\}\newline
(
C
)
{
3
,
4
,
7
,
8
}
(
D
)
{
–
7
,
–
4
,
4
,
8
}
(D)\{–7,–4,4,8\}
(
D
)
{
–7
,
–4
,
4
,
8
}
Get tutor help
Posted 1 year ago
Question
What is the domain of this function?
\newline
(
10
,
–
3
)
(
2
,
–
9
)
(
–
5
,
8
)
(
3
,
1
)
(10,\,–3)(2,\,–9)(–5,\,8)(3,\,1)
(
10
,
–3
)
(
2
,
–9
)
(
–5
,
8
)
(
3
,
1
)
\newline
Choices:
\newline
[
{
–
5
,
2
,
3
,
10
}
]
[
{
–
9
,
–
3
,
1
,
8
}
]
[
{
1
,
2
,
3
,
10
}
]
[
{
–
10
,
–
5
,
2
,
3
}
]
[\{–5,2,3,10\}][\{–9,\,–3,1,8\}][\{1,2,3,10\}][\{–10,\,–5,2,3\}]
[{
–5
,
2
,
3
,
10
}]
[{
–9
,
–3
,
1
,
8
}]
[{
1
,
2
,
3
,
10
}]
[{
–10
,
–5
,
2
,
3
}]
Get tutor help
Posted 1 year ago
Question
What is the domain of this function?
\newline
(
1
,
–
4
)
(
9
,
–
12
)
(
–
6
,
11
)
(
7
,
5
)
(1,–4)(9,–12)(–6,11)(7,5)
(
1
,
–4
)
(
9
,
–12
)
(
–6
,
11
)
(
7
,
5
)
\newline
Choices:
(
A
)
{
–
6
,
1
,
7
,
9
}
\newline\\(A)\{–6,1,7,9\}\newline
(
A
)
{
–6
,
1
,
7
,
9
}
(
B
)
{
–
12
,
–
4
,
5
,
11
}
(B)\{–12,–4,5,11\}\newline
(
B
)
{
–12
,
–4
,
5
,
11
}
(
C
{
5
,
1
,
7
,
9
}
(C\{5,1,7,9\}\newline
(
C
{
5
,
1
,
7
,
9
}
(
D
)
{
–
9
,
–
6
,
1
,
7
}
(D)\{–9,–6,1,7\}
(
D
)
{
–9
,
–6
,
1
,
7
}
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant