Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the sum of the first 8 terms of the following sequence. Round to the nearest hundredth if necessary.

9,quad-12,quad16,dots
Sum of a finite geometric series:

S_(n)=(a_(1)-a_(1)r^(n))/(1-r)
Answer:

Find the sum of the first 88 terms of the following sequence. Round to the nearest hundredth if necessary.\newline9,12,16, 9, \quad-12, \quad 16, \ldots \newlineSum of a finite geometric series:\newlineSn=a1a1rn1r S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r} \newlineAnswer:

Full solution

Q. Find the sum of the first 88 terms of the following sequence. Round to the nearest hundredth if necessary.\newline9,12,16, 9, \quad-12, \quad 16, \ldots \newlineSum of a finite geometric series:\newlineSn=a1a1rn1r S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r} \newlineAnswer:
  1. Identify terms and ratio: Identify the first term a1a_1 and the common ratio rr of the geometric sequence.\newlineThe first term a1a_1 is 99. To find the common ratio rr, we divide the second term by the first term: r=12/9=4/3r = -12 / 9 = -4/3.
  2. Use sum formula: Use the formula for the sum of the first nn terms of a geometric series: Sn=a1a1rn1rS_n = \frac{a_1 - a_1 \cdot r^n}{1 - r}. Here, n=8n = 8, a1=9a_1 = 9, and r=43r = -\frac{4}{3}.
  3. Substitute and calculate sum: Substitute the values into the formula and calculate the sum. \newlineS8=99×(43)81(43)S_8 = \frac{9 - 9 \times (-\frac{4}{3})^8}{1 - (-\frac{4}{3})}
  4. Calculate (43)8(-\frac{4}{3})^8: Calculate the value of (43)8.(-\frac{4}{3})^8.\newline(43)8=(4)8/38=655366561(-\frac{4}{3})^8 = (-4)^8 / 3^8 = \frac{65536}{6561}
  5. Substitute value into formula: Substitute the value of (43)8(-\frac{4}{3})^8 into the sum formula.\newlineS8=99×(655366561)1+43S_8 = \frac{9 - 9 \times (\frac{65536}{6561})}{1 + \frac{4}{3}}
  6. Simplify expression: Simplify the expression.\newlineS8=99×(655366561)73S_8 = \frac{9 - 9 \times \left(\frac{65536}{6561}\right)}{\frac{7}{3}}\newlineS8=959049656173S_8 = \frac{9 - \frac{59049}{6561}}{\frac{7}{3}}
  7. Calculate numerator: Calculate the numerator of the sum.\newline9590496561=99=09 - \frac{59049}{6561} = 9 - 9 = 0

More problems from Sum of finite series not start from 1