Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the sum of the first 25 terms in this geometric series:

8+6+4.5". "
Choose 1 answer:
(A) 0.03
(B) 4.57
(C) 
29.91
(D) 31.98

Find the sum of the first 2525 terms in this geometric series:\newline8+6+4.58+6+4.5. \newlineChoose 11 answer:\newline(A) 0.030.03\newline(B) 4.574.57\newline(C) 29.9129.91\newline(D) 31.9831.98

Full solution

Q. Find the sum of the first 2525 terms in this geometric series:\newline8+6+4.58+6+4.5. \newlineChoose 11 answer:\newline(A) 0.030.03\newline(B) 4.574.57\newline(C) 29.9129.91\newline(D) 31.9831.98
  1. Identify Terms and Values: First, identify the first term (a1a_1), common ratio (rr), and number of terms (nn) in the geometric series.\newlineThe first term a1a_1 is 88, the second term is 66, and the third term is 4.54.5.\newlineTo find the common ratio rr, we divide the second term by the first term: r=68=0.75r = \frac{6}{8} = 0.75.\newlineThe number of terms nn is given as rr00.
  2. Calculate Common Ratio: Use the formula for the sum of the first nn terms of a geometric series: Sn=a1×(1rn)/(1r)S_n = a_1 \times (1 - r^n) / (1 - r), where SnS_n is the sum of the first nn terms.\newlinePlug in the values: S25=8×(10.7525)/(10.75)S_{25} = 8 \times (1 - 0.75^{25}) / (1 - 0.75).
  3. Use Sum Formula: Calculate the sum using the values from the previous step.\newlineS25=8×(10.7525)/(10.75)S_{25} = 8 \times (1 - 0.75^{25}) / (1 - 0.75)\newline=8×(10.7525)/0.25= 8 \times (1 - 0.75^{25}) / 0.25\newline=8×(10.0000037252902984619140625)/0.25= 8 \times (1 - 0.0000037252902984619140625) / 0.25\newline=8×(0.9999962747097015380859375)/0.25= 8 \times (0.9999962747097015380859375) / 0.25\newline=8×39999.8507880687713623046875= 8 \times 39999.8507880687713623046875\newline=319999.4063045501708984375= 319999.4063045501708984375

More problems from Sum of finite series not start from 1