Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the sum of the first 25 terms in this geometric series:

8+6+4.5 dots
Choose 1 answer:
(A) 0.03
(B) 4.57
(c) 
29.91
(D) 31.98

Find the sum of the first 2525 terms in this geometric series:\newline8+6+4.5 8+6+4.5 \ldots \newlineChoose 11 answer:\newline(A) 00.0303\newline(B) 44.5757\newline(C) 29.91 \mathbf{2 9 . 9 1} \newline(D) 3131.9898

Full solution

Q. Find the sum of the first 2525 terms in this geometric series:\newline8+6+4.5 8+6+4.5 \ldots \newlineChoose 11 answer:\newline(A) 00.0303\newline(B) 44.5757\newline(C) 29.91 \mathbf{2 9 . 9 1} \newline(D) 3131.9898
  1. Identify first term: Identify the first term (a1a_1) of the geometric series.\newlineThe first term is given as 88.
  2. Calculate common ratio: Identify the second term a2a_2 and calculate the common ratio rr. The second term is given as 66. To find the common ratio, divide the second term by the first term. r=a2a1=68=0.75r = \frac{a_2}{a_1} = \frac{6}{8} = 0.75
  3. Use formula for sum: Use the formula for the sum of the first nn terms of a geometric series.\newlineThe formula is:\newlineSn=a1(1rn)1rS_n = \frac{a_1(1 - r^n)}{1 - r}\newlineWe have:\newlinea1=8a_1 = 8\newliner=0.75r = 0.75\newlinen=25n = 25
  4. Substitute values and calculate: Substitute the values into the formula and calculate the sum. \newlineS25=8(10.7525)(10.75)S_{25} = \frac{8(1 - 0.75^{25})}{(1 - 0.75)}\newlineCalculate 0.75250.75^{25} using a calculator.\newline0.75250.0003160.75^{25} \approx 0.000316
  5. Continue calculation: Continue the calculation.\newlineS25=8(10.000316)10.75S_{25} = \frac{8(1 - 0.000316)}{1 - 0.75}\newlineS25=8(0.999684)0.25S_{25} = \frac{8(0.999684)}{0.25}
  6. Complete calculation: Complete the calculation.\newlineS25=8×0.999684/0.25S_{25} = 8 \times 0.999684 / 0.25\newlineS25=7.997472/0.25S_{25} = 7.997472 / 0.25\newlineS25=31.989888S_{25} = 31.989888
  7. Round the result: Round the result to two decimal places, as the answer choices are given in two decimal places.\newlineS2531.99S_{25} \approx 31.99

More problems from Find the sum of a finite geometric series