Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the sum of the finite series. \newline i=3120i(i5)\sum_{i=3}^{120} i(i-5) \newline______

Full solution

Q. Find the sum of the finite series. \newline i=3120i(i5)\sum_{i=3}^{120} i(i-5) \newline______
  1. Expand and Simplify: Simplify the expression i(i5)i(i-5) by expanding it. This gives us i25ii^2 - 5i.
  2. Distribute Summation: Distribute the summation from 33 to 120120 into i25ii^2 - 5i. This gives us i=3120i2i=31205i\sum_{i=3}^{120}i^2 - \sum_{i=3}^{120}5i.
  3. Evaluate First Term: Evaluate the first term i=3120i2\sum_{i=3}^{120}i^2 using the summation rule for squares of integers.i=1ni2=n(n+1)(2n+1)6\sum_{i=1}^{n}i^2 = \frac{n(n+1)(2n+1)}{6}We need to subtract the sum of squares from 11 to 22 from the sum of squares from 11 to 120120.i=3120i2=i=1120i2i=12i2\sum_{i=3}^{120}i^2 = \sum_{i=1}^{120}i^2 - \sum_{i=1}^{2}i^2=(120(120+1)(2120+1)6)(2(2+1)(22+1)6)= \left(\frac{120(120+1)(2\cdot120+1)}{6}\right) - \left(\frac{2(2+1)(2\cdot2+1)}{6}\right)=(1201212416)(2356)= \left(\frac{120\cdot121\cdot241}{6}\right) - \left(\frac{2\cdot3\cdot5}{6}\right)=(29052006)(306)= \left(\frac{2905200}{6}\right) - \left(\frac{30}{6}\right)=4842005= 484200 - 5=484195= 484195
  4. Evaluate Second Term: Evaluate the second term i=31205i\sum_{i=3}^{120}5i using the summation rule for arithmetic series.\newlinei=1ni=n(n+1)2\sum_{i=1}^{n}i = \frac{n(n+1)}{2}\newlineWe need to subtract the sum from 11 to 22 from the sum from 11 to 120120 and then multiply by 55.\newlinei=31205i=5×(i=1120ii=12i)\sum_{i=3}^{120}5i = 5 \times (\sum_{i=1}^{120}i - \sum_{i=1}^{2}i)\newline=5×(120(120+1)22(2+1)2)= 5 \times \left(\frac{120(120+1)}{2} - \frac{2(2+1)}{2}\right)\newline=5×(120×12122×32)= 5 \times \left(\frac{120\times121}{2} - \frac{2\times3}{2}\right)\newline=5×(72603)= 5 \times (7260 - 3)\newline=5×7257= 5 \times 7257\newline=36285= 36285
  5. Subtract and Final Answer: Subtract the second term from the first term to get the final answer.\newlineFinal Answer = 48419536285484195 - 36285\newline= 447910447910

More problems from Sum of finite series not start from 1