Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the slope-intercept form for the line passing through (17,89)\left(\frac{1}{7},\frac{8}{9}\right) and (18,78)\left(\frac{1}{8},\frac{7}{8}\right).

Full solution

Q. Find the slope-intercept form for the line passing through (17,89)\left(\frac{1}{7},\frac{8}{9}\right) and (18,78)\left(\frac{1}{8},\frac{7}{8}\right).
  1. Find Slope: Find the slope mm of the line using the slope formula m=y2y1x2x1m = \frac{y_2 - y_1}{x_2 - x_1}. We have two points (x1,y1)=(17,89)(x_1, y_1) = (\frac{1}{7}, \frac{8}{9}) and (x2,y2)=(18,78)(x_2, y_2) = (\frac{1}{8}, \frac{7}{8}). So, m=(78)(89)(18)(17)m = \frac{(\frac{7}{8}) - (\frac{8}{9})}{(\frac{1}{8}) - (\frac{1}{7})}.
  2. Calculate Slope: Calculate the slope mm.m=(78)(89)(18)(17)m = \frac{(\frac{7}{8}) - (\frac{8}{9})}{(\frac{1}{8}) - (\frac{1}{7})}m=(6372)(6472)(756)(856)m = \frac{(\frac{63}{72}) - (\frac{64}{72})}{(\frac{7}{56}) - (\frac{8}{56})}m=172156m = \frac{-\frac{1}{72}}{-\frac{1}{56}}m=172×561m = \frac{1}{72} \times \frac{56}{1}m=5672m = \frac{56}{72}m=79m = \frac{7}{9}
  3. Find Y-Intercept: Use one of the points to find the y-intercept bb using the point-slope form yy1=m(xx1)y - y_1 = m(x - x_1). Let's use the point (17,89)(\frac{1}{7}, \frac{8}{9}). 89=79(17)+b\frac{8}{9} = \frac{7}{9}(\frac{1}{7}) + b
  4. Solve for b: Solve for b.\newline89=(79)(17)+b\frac{8}{9} = \left(\frac{7}{9}\right)\left(\frac{1}{7}\right) + b\newline89=19+b\frac{8}{9} = \frac{1}{9} + b\newlineb=8919b = \frac{8}{9} - \frac{1}{9}\newlineb=79b = \frac{7}{9}
  5. Write Equation: Write the equation in slope-intercept form y=mx+by = mx + b. Using the slope m=79m = \frac{7}{9} and y-intercept b=79b = \frac{7}{9}, the equation is: y=(79)x+79y = \left(\frac{7}{9}\right)x + \frac{7}{9}

More problems from Multiplication with rational exponents