Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the second derivative of the function.\newlinef(x)=4x23x4f(x) = 4x^{-2} - 3x^{-4}\newlinef(x)=f''(x) = ______

Full solution

Q. Find the second derivative of the function.\newlinef(x)=4x23x4f(x) = 4x^{-2} - 3x^{-4}\newlinef(x)=f''(x) = ______
  1. Find First Derivative: First, find the first derivative of the function f(x)=4x23x4f(x) = 4x^{-2} - 3x^{-4}.\newlineUsing the power rule for derivatives, ddx[xn]=nx(n1)\frac{d}{dx}[x^n] = n\cdot x^{(n-1)}, we calculate:\newlinef(x)=4(2)x(21)3(4)x(41)f'(x) = 4\cdot(-2)\cdot x^{(-2-1)} - 3\cdot(-4)\cdot x^{(-4-1)}\newline = 8x3+12x5-8x^{-3} + 12x^{-5}
  2. Calculate First Derivative: Next, find the second derivative of the function using the first derivative f(x)=8x3+12x5f'(x) = -8x^{-3} + 12x^{-5}.\newlineAgain applying the power rule:\newlinef(x)=8(3)x(31)+12(5)x(51)f''(x) = -8(-3)x^{(-3-1)} + 12(-5)x^{(-5-1)}\newline = 24x460x624x^{-4} - 60x^{-6}

More problems from Find second derivatives of trigonometric, exponential, and logarithmic functions