Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the second derivative of the function.\newlinef(x)=4x411f(x) = -\frac{4}{x^4} - 11\newlinexx = ______

Full solution

Q. Find the second derivative of the function.\newlinef(x)=4x411f(x) = -\frac{4}{x^4} - 11\newlinexx = ______
  1. Find First Derivative: Find the first derivative of f(x)f(x).f(x)=ddx(4x411)f'(x) = \frac{d}{dx}(-\frac{4}{x^4} - 11)Using the power rule, ddx(xn)=nx(n1)\frac{d}{dx}(x^n) = n\cdot x^{(n-1)}, and the derivative of a constant is 00.f(x)=ddx(4x4)ddx(11)f'(x) = \frac{d}{dx}(-4\cdot x^{-4}) - \frac{d}{dx}(11)f(x)=4(4)x50f'(x) = -4\cdot(-4)\cdot x^{-5} - 0f(x)=16x5f'(x) = 16x^{-5}
  2. Find Second Derivative: Find the second derivative of f(x)f(x).f(x)=ddx(16x5)f''(x) = \frac{d}{dx}(16x^{-5})Using the power rule again,f(x)=16(5)x6f''(x) = 16*(-5)*x^{-6}f(x)=80x6f''(x) = -80x^{-6}

More problems from Find second derivatives of trigonometric, exponential, and logarithmic functions