Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the second derivative of the function.\newlinef(x)=2x+10f(x) = \frac{2}{x} + 10\newlinef(x)=f''(x) = ______\_\_\_\_\_\_

Full solution

Q. Find the second derivative of the function.\newlinef(x)=2x+10f(x) = \frac{2}{x} + 10\newlinef(x)=f''(x) = ______\_\_\_\_\_\_
  1. Find First Derivative: First, let's find the first derivative of f(x)=2x+10f(x) = \frac{2}{x} + 10.f(x)=ddx(2x)+ddx(10)f'(x) = \frac{d}{dx} (\frac{2}{x}) + \frac{d}{dx} (10)=2x2+0= -\frac{2}{x^2} + 0=2x2= -\frac{2}{x^2}
  2. Find Second Derivative: Now, let's find the second derivative, which is the derivative of f(x)f'(x).f(x)=ddx(2x2)f''(x) = \frac{d}{dx} \left(-\frac{2}{x^2}\right)=4x3= \frac{4}{x^3}

More problems from Find second derivatives of trigonometric, exponential, and logarithmic functions