Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the minimum value of the function 
f(x)=2x^(2)-8.1 x+14.5 to the nearest hundredth.
Answer:

Find the minimum value of the function f(x)=2x28.1x+14.5 f(x)=2 x^{2}-8.1 x+14.5 to the nearest hundredth.\newlineAnswer:

Full solution

Q. Find the minimum value of the function f(x)=2x28.1x+14.5 f(x)=2 x^{2}-8.1 x+14.5 to the nearest hundredth.\newlineAnswer:
  1. Calculate Vertex: To find the minimum value of the quadratic function f(x)=2x28.1x+14.5f(x) = 2x^2 - 8.1x + 14.5, we can use the vertex formula. The vertex of a parabola given by f(x)=ax2+bx+cf(x) = ax^2 + bx + c is at the point (h,k)(h, k), where h=b2ah = -\frac{b}{2a}. Since the coefficient of x2x^2 is positive, the parabola opens upwards, and the vertex represents the minimum point.
  2. Find x-coordinate: First, we calculate the x-coordinate of the vertex, hh, using the formula h=b/(2a)h = -b/(2a). Here, a=2a = 2 and b=8.1b = -8.1. \newlineh=(8.1)/(2×2)=8.1/4=2.025h = -(-8.1) / (2 \times 2) = 8.1 / 4 = 2.025
  3. Substitute xx into function: Next, we substitute x=hx = h into the function to find the y-coordinate of the vertex, kk, which will give us the minimum value of the function.\newlinef(2.025)=2(2.025)28.1(2.025)+14.5f(2.025) = 2(2.025)^2 - 8.1(2.025) + 14.5
  4. Perform calculations: Now we perform the calculations:\newlinef(2.025)=2(4.100625)16.4025+14.5f(2.025) = 2(4.100625) - 16.4025 + 14.5\newlinef(2.025)=8.2012516.4025+14.5f(2.025) = 8.20125 - 16.4025 + 14.5\newlinef(2.025)=6.29875f(2.025) = 6.29875
  5. Round to nearest hundredth: Finally, we round the minimum value to the nearest hundredth. The minimum value of the function f(x)f(x) to the nearest hundredth is 6.306.30.

More problems from Find trigonometric functions using a calculator